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1 Introduction

In recent years, the advancement of autonomous vehicle technologies has garnered significant atten-
tion, promising a revolutionary transformation in transportation systems as well as in applications
of mobile robotics. A crucial aspect of enabling safe and reliable autonomous navigation is robust
object detection, which relies heavily on accurate perception of the environment. Light Detection
and Ranging (LiDAR) has emerged as a cornerstone sensor for such perception due to its ability to
capture detailed 3D spatial information. However, one of the persistent challenges in LiDAR-based
object detection is occlusion — the obstruction of objects by other objects, itself or the environ-
ment [1]. This phenomenon introduces uncertainty and ambiguity, potentially leading to erroneous
detection and compromised decision-making for autonomous vehicles. Occlusion will make objects
appear incomplete in points clouds, i.e., objects will only be partially visible, thus making them
incomplete and harder to detect using 3D object detectors [1].

This Ph.D. project proposal seeks to address the critical challenges posed by occlusion by ex-
ploring innovative techniques to enhance object detection accuracy in occluded scenarios. Our
first objective is to improve object detection of occluded objects by developing a novel mask-based
bird’s-eye view (BEV) object detection neural network architecture. This architecture is designed
to simultaneously detect and complete objects, thereby improving object recognition in occlusion-
prone contexts. The second objective revolves around addressing a gap in existing autonomous
vehicle datasets by introducing an innovative dataset that employs multi-LiDAR point clouds and
integrates drone imaging to achieve a top-down view (BEV) of the scene. Lastly, the third objec-
tive involves exploring the application of multi-modal self-supervised learning within the domain of
autonomous vehicles, leveraging the dataset of the second objective. By investigating occlusion and
developing novel architectures, datasets and training techniques, this proposal aspires to overcome
the many challenges posed by LiDAR point clouds for deep learning.

This proposal is structured as follows: the essential theoretical groundwork is presented in
Section 2, while the research question itself is defined in Section 3. Section 4 offers an overview
of related work relevant to the proposed research avenues. The three primary objectives, along
with the respective methodologies, are elaborated upon in Section 5. A detailed schedule for each
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objective is outlined in Section 6. Finally, the proposal concludes in Section 7, encapsulating the
comprehensive objectives and potential contributions of the research.
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2 Theory

This section reviews the fundamental concepts necessary for comprehending the main research
question of this proposal, which is detailed in Section 3. A more extensive examination of the
relevant literature will be conducted in Section 4.

2.1 Point Clouds and Their Challenges for Deep Neural Networks

Handling point cloud data presents several challenges for deep neural networks, stemming from the
inherent characteristics of these data structures. A point cloud is a set of 3D points in a metric space
— more precisely for LiDAR data, a set of points in R3, alongside the Euclidean distance metric.
When available, these points might also include supplementary attributes, such as return intensity
(i.e., reflectance). However, this kind of data introduces a set of distinct challenges, classified into
three primary categories by Bello et al. [2]. Point clouds are irregular, unstructured, and unordered.

Irregularity Point clouds are characterized by uneven spatial sampling, leading to differing point
densities across various regions of a scene. For instance, areas situated closer to the LiDAR sen-
sor often exhibit a higher density of points compared to those farther away. This phenomenon is
particularly pronounced in the context of autonomous vehicle applications, given the complex and
dynamic nature of urban landscapes. Point clouds in these scenarios often exhibit sparser distri-
butions of points in space [3]. This non-uniform sampling makes point clouds harder for neural
networks to handle, necessitating the capability to manage diverse levels of detail and the efficient
capture of spatial information across the entirety of the point cloud.

Unstructured Unlike structured data like images, which follow a regular grid arrangement of
evenly spaced pixels, point clouds lack this kind of structure. Points within a point cloud can
occupy any 3D position within the sensor’s range. This unstructured nature makes it challenging
to apply traditional grid-based convolutional operations, as commonly used in computer vision.
Neural networks designed for point clouds must account for this lack of structure.

Unorderness Point clouds, being a set of points, inherit the unordered nature of sets. Conse-
quently, there exists no inherent ordering among the points. This lack of order presents a significant
challenge when it comes to designing neural network architectures handling point clouds. Opera-
tions within such neural networks must be invariant to point permutations, as any permutation of
a point cloud still represents the same underlying point cloud.

Overcoming these challenges requires the development of specialized neural network architec-
tures capable of processing such data. Section 4.1 provides an overview of some methods addressing
these challenges.
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2.2 Occlusion in LiDAR Point Clouds

While the challenges outlined in Section 2.1 are related to the type of data of point clouds as a set
of points in R3, the concept of occlusion pertains to the semantic aspects of the data, i.e., what
these points represent. In the context of LiDAR point clouds, occlusion constitutes a significant
challenge that can impact the accuracy and reliability of object detection [1]. Occlusion refers to the
phenomenon wherein objects are obscured or partially concealed by other objects, the environment,
or even themselves. This phenomenon can lead to incomplete representations of objects within
the point cloud, rendering their detection more challenging [1], [4]. Occlusion can be classified
into different types based on its nature and source [1], each contributing to the complexity of
comprehending the environment. In addition to occlusion, signal miss can also result in a partial
representation of objects in point clouds.

Self-Occlusion Self-occlusion occurs when one side of an object obstructs the view of its opposite
side, leaving only the portion facing the LiDAR sensor visible within the point cloud. This type
of occlusion is inherent and affects every object within a LiDAR scan. Given that solely one facet
of the object is observable in the LiDAR scan, accurately determining the object’s complete shape
becomes a challenging endeavour. An example of self-occlusion is illustrated in Figure 1, where
there are points in red only on the LiDAR-facing side, leaving its backside empty.

Car points
Other scan points

Figure 1: Example of self-occlusion in SemanticKITTI[5] from a BEV perspective. The red
points denote a car instance, with its complete footprint outlined in grey. The side of the car facing the
LiDAR sensor hides the remainder of the object, resulting in an absence of points on the rest of the object
and behind it.

External-Occlusion External-occlusion occurs when one object obstructs the visibility of an-
other object within the scene. The occluding object blocks the LiDAR’s beams from reaching the
objects, creating frustums of occluded space. For instance, a large car might occlude a smaller
vehicle behind it, rendering the hidden object partially or entirely invisible in the point cloud. Ad-
ditionally, this type of occlusion introduces ambiguity regarding whether empty regions of space in
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the point cloud are indeed empty or instead occluded due to the presence of occluding objects. An
example of external-occlusion can be seen in Figure 1, where no points are present on the ground
behind the vehicle.

Signal Miss In addition to self- and external-occlusion, signal misses can also result in missing
points on objects. A signal miss occurs when reflective materials deflect the LiDAR’s laser beams
away from the sensor or when low reflectance causes the absence of reflected signals. This can
be caused by factors such as reflective properties, transparency, or the sensor’s viewing angle.
Consequently, objects incapable of effectively reflecting LiDAR signals may manifest as gaps or
voids within the point cloud data. Signal miss further complicates object detection by contributing
to incomplete point cloud representations.

The overarching result of occlusion and signal miss is that they make objects appear incomplete
within point clouds, hampering the ability of object detectors to accurately detect them [1], [4].
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3 Research Problem

Object detection in point clouds is a crucial task for a wide range of applications, notably in the
context of autonomous vehicles. Point clouds are often generated by LiDAR sensors, capturing in-
tricate spatial information about the environment. The objective of object detection is to accurately
identify and locate various objects, such as vehicles, pedestrians, and cyclists, within a 3D point
cloud. This task involves predicting both the spatial location and the class of detected objects. An
illustration of an object detection task is provided in Figure 2. This task is particularly challeng-
ing due to the dynamic and complex and dynamic nature of the environments where autonomous
systems operate [3].

Figure 2: Illustration of an object detection task. The primary goal of object detection is to
accurately locate and classify objects (e.g., vehicles, pedestrians, and cyclists) within a 3D point cloud.
We show here detected objects with bounding boxes and labels with their respective class names. Image
created using data from Déziel et al. [6].

Among the many applications of deep learning to point cloud data [2], our research proposal
focuses solely on real-time dynamic object detection for autonomous vehicles. The application of
these techniques will vary greatly depending on the field they are used in. For instance, point
cloud analysis in geomatics and surveying primarily revolves around static structures processed
in an offline manner. As such, some techniques are not possible to use either because they only
work on static objects (i.e., building maps by registering point clouds), or cannot be used in a
real-time setting. The analysis of point clouds also varies greatly depending on the source of
the data. Datasets used for object classification and part segmentation, such as ModelNet40 [7]
and ShapeNet [8], generally consist of point clouds acquired from scanned objects or 3D meshes.
Thus, these datasets provide points from all sides of the objects, which is not usually the case in
autonomous vehicle contexts where we are “inside” of the scene and suffer from occlusion. Indoor
datasets like the Indoor Stanford 3D Indoor Dataset (S3DIS) [9] and ScanNet [10] offer denser point
clouds in simpler environments. They contrast with outdoor point clouds, which are characterized
by increased complexity, sparser point clouds and dynamic scenes [3], which exacerbated challenges
highlighted in Section 2. Also, LiDAR point clouds are effectively 2.5D representations because
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they only capture portions of the underlying shapes [1]. Object detection for autonomous vehicles
thus provides unique challenges that require innovative techniques to solve, notably for handling
dynamic objects, occlusion and the high complexity of environments.

As discussed in Section 2.2, occlusion poses a significant challenge to deep neural networks
operating on point clouds. Objects often appear incomplete, making detection more challenging
and exacerbating the inherent complexities in point cloud analysis. These challenges can lead to
potential accidents [4], and thus the development of more robust object detection architectures is
essential for improved performances and safer autonomous vehicles.

In addition to occlusion challenges, the annotation of 3D data remains a hurdle due to the time-
consuming and expensive nature of data labelling [5], [11]. Most autonomous vehicle datasets are
collected in North American and European cities, resulting in a need for simpler data annotation
processes to facilitate the collection of supplementary data in new environments and scenarios.
Wilson et al. [12] highlights the importance of mining interesting scenarios in varied environments
for autonomous vehicle datasets. This prompts a novel data acquisition technique that deliberately
gathers data that is complementary (i.e., in object types, viewpoints, and environments) to larger-
scale datasets in a cost-effective manner. This would help to extend the application of point cloud-
based object detection to regions or scenarios excluded from major dataset efforts, such as remote
or forested areas, and enhance the overall performance of deep learning models.

In light of these challenges, our research proposal outlines three primary research avenues.

Joint Object Detection and Completion We introduce MaskBEV, a novel approach aimed
at bridging the gap between point cloud and computer vision architectures. MaskBEV, detailed
in Section 5.1, is designed to simultaneously detect and complete objects from a BEV perspective.
By training MaskBEV to predict complete BEV instance masks (i.e., binary images representing
the complete footprint of each detected object from a BEV), we aim to bolster object detection’s
resilience to various forms of occlusion.

Multi-LiDAR BEV Dataset Our proposal introduces Bird’s-Eye View Occlusion (BEVOcc),
a novel dataset employing multiple static LiDARs and a drone-mounted BEV camera. The inclusion
of multiple LiDAR viewpoints, placed on either side of streets, enables the acquisition of point clouds
from diverse perspectives, and thus with reduced occlusion. Moreover, the BEV viewpoint offers
valuable insights into the complete scene, streamlining the annotation process. This dataset seeks
to complement existing autonomous vehicle datasets by incorporating multiple LiDAR viewpoints
in interesting and varied scenarios. BEVOcc is aimed at gaining invaluable insights into occlusion
and its impact on deep neural network performance, particularly in object detection tasks. Also,
this new dataset will allow us to evaluate the benefits of adding complementary data, acquired and
annotated in a lower cost easily reproducible manner manner, to larger datasets. This dataset will
also provide a fertile ground for testing training algorithms for vehicle-to-vehicle (V2V) applications,
as the usage of multiple LiDAR scans is an invaluable tool to counter the effects of occlusion and
the short usable perception range of LiDARs with [4].

7/51



Seeing Through Occlusion: Innovative Techniques for Reliable LiDAR-based Object Detection

Multi-Modal Self-Supervised Learning The application of Self-Supervised Learning (SSL)
techniques has witnessed considerable success in various domains of machine learning [12]. SSL
techniques aim to extract knowledge from unlabelled data, providing a means to mitigate the chal-
lenges associated with annotating 3D data [3]. By capitalizing on the BEV information available in
BEVOcc, we intend to train networks to develop a form of “common sense” [13] about the structure
of 3D scenes, thereby enhancing object detection’s robustness in occluded scenarios. Furthermore,
SSL can effectively exploit the richness of the diverse modalities within BEVOcc, presenting a
promising avenue for improving object detection. This underscores SSL as a compelling research
pathway for enhancing object detection within the autonomous vehicle domain.

In summary, the central research question this proposal aims to address is:

How can we enhance LiDAR-based object detection in occluded scenarios?

The proposed objectives, detailed in Section 5, each present a project that contributes to answer-
ing this overarching question. These objectives encompass training networks to complete occluded
objects (Section 5.1), introducing a new dataset with multi-LiDAR perspectives and BEV imagery
(Section 5.2), and investigating the potential of SSL techniques to bolster object detection in oc-
cluded environments (Section 5.3).
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4 Related Work

This section provides an overview of the existing research on deep learning techniques applied to
point clouds. We will first explore the diverse range of deep learning approaches that have been
developed to handle point cloud data in Section 4.1. Following that, we will delve into the realm of
3D object detection models (Section 4.2) and discuss strategies for addressing occlusion challenges
in deep neural networks (Section 4.3). Finally, we will review widely used datasets in the domain
of autonomous vehicle research, particularly for training and evaluating object detection models, in
Section 5.2.

4.1 Deep Learning on Point Clouds

Point cloud data presents unique challenges, as discussed in Section 2, due to its irregular, un-
structured, and unordered nature. These characteristics require the development of specialized
techniques to enable deep neural networks to effectively handle such data. In this section, we draw
inspiration from the classification proposed by Bello et al. [2] and Guimont-Martin [14] to present
a taxonomy of these techniques. Figure 3 illustrates this taxonomy.

These techniques can be broadly categorized into two main groups: structured and unstructured
methods. Structured approaches involve imposing a specific structure onto point clouds to make
them more amenable to neural network processing. On the other hand, unstructured approaches
focus on designing novel neural network architectures specifically tailored for handling raw point
cloud data. The categorization presented in this section draws inspiration Guimont-Martin [14].

4.1.1 Structured Approaches

Structured approaches tackle the inherent lack of organization in point cloud data by imposing
a predefined structure onto the raw point cloud data. These structures facilitate the application
of deep learning techniques. This can be done by voxelizing the point cloud into a 3D regular
grid representing a volume of cube-shaped cells (i.e., voxels), making possible the application of
Convolutional Neural Network (CNN). Multi-view approaches instead take on the problem from a
computer vision point of view, representing the 3D point cloud as a series of 2D views. Another
approach is to project the point cloud onto a regular grid of points (i.e., a lattice), on which a
convolution operator can be defined.

Voxel-Based One common structured approach is voxelization, which involves partitioning the
volume containing the point cloud into small cuboids known as voxels. Each voxel contains a subset
of the input point cloud data. These subsets can be represented as embedding vectors (i.e., features)
using various encoding methods. For instance, encoding can be based on binary occupancy [15],
point density within each voxel [16], or applying a PointNet per voxel [17]. This representation
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Deep Learning Techniques
for Point Clouds

Structured

Voxel-Based Multi-view
Lattice

Projection

Unstructured

PointNet
Point

Convolution
Graph Attention

Figure 3: Taxonomy of deep learning techniques for point clouds. This taxonomy classifies
techniques into two main groups: structured and unstructured approaches. Structured approaches, such
as Voxel-Based, Multi-view, and Lattice Projection, impose a structures to point clouds. In contrast,
unstructured approaches, including PointNet, Point Convolution, Graph, and Attention-based methods,
are designed to handle raw point cloud data directly. This figure is adapted and translated from Guimont-
Martin [14].

effectively transforms the irregular point cloud into a structured, regular 3D grid, enabling the
application of 3D convolutions, similar to those used in image processing.

Despite their conceptual simplicity, voxel-based methods have certain drawbacks. They often
demand substantial memory resources due to the necessity of storing a large 3D grid with fine
resolution to capture details accurately. Additionally, computational costs tend to be higher because
convolutions need to be applied across multiple dimensions. LiDAR scans from autonomous vehicles,
for example, are frequently sparse [3], leading to numerous empty voxels [18]. To mitigate these
issues, techniques such as sparse voxel representations and sparse convolutions [19], [20] can be
employed to avoid storing empty voxels and reduce unnecessary computation. However, in any
case, if the voxel resolution is too coarse, voxelization-based methods may suffer from quantization
artifacts.

Some models using voxelization for object detection for autonomous vehicle applications, like
PointPillars [21] and PIXOR [18], use a 2D voxel grid aligned parallel to the ground, treating
each voxel as a vertical rectangular pillar. This approach effectively generates a 2D pseudo-image
representing the point cloud from a BEV perspective, enabling the application of standard 2D
convolutions.

Multi-view Multi-view approaches sidestep the challenges of 3D data by translating the point
cloud into a series of 2D views. These views are generated by placing virtual cameras around the
point cloud, effectively projecting the 3D data into 2D space. While each individual view lacks
depth information, 3D information can be inferred by leveraging relationships between multiple
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views. Typically, computer vision models like CNN are applied independently to each 2D view, and
the information is fused across views using pooling operations.

Multi-view approaches do not suffer from quantization artifacts and are computationally effi-
cient, as they often rely on CNN. However, they are often limited to object datasets (i.e., 3D scans
of objects [7], [8]), which are simpler than the complex outdoor scenes encountered in autonomous
driving scenarios [3]. Consequently, multi-view techniques are predominantly used for object clas-
sification [22], [23]. Although it is possible to adapt multi-view methods for object detection [24],
they are less common in tasks related to autonomous vehicles, which involve more intricate 3D
scenes.

Lattice Projection Lattice projection-based methods address the challenge of point clouds’ un-
structured nature by projecting the raw points onto a higher-dimensional regular grid of points,
known as a lattice. This lattice projection provides a structured foundation on which convolu-
tion operations can be defined. For example, in the case of point clouds with (x, y, z) coordinates
and (r, g, b) colour information, a lattice projection-based network would project each point onto
a 6-dimensional grid, encompassing (x, y, z, r, g, b) coordinates. Subsequently, convolutions can be
applied within this grid [25]. Other approaches, such as that of Rao et al. [26], project points onto
a fractalized regular icosahedron lattice, approximating the surface of a sphere. This approach
helps maintain rotation invariance. The structure of the underlying lattice can help the model to
maintain an invariance to certain transformations.

4.1.2 Unstructured Approaches

While structured approaches adapted the data representation to fit the needs of neural networks,
unstructured approaches instead adapted the design of the networks to better fit point clouds.
This often involves the use of innovative techniques instead of traditional convolution operations.
Such approaches typically hinge on the underlying properties of point clouds. Several notable
unstructured approaches include PointNet-based networks, point convolution-based methods, graph
neural networks, and attention-based networks.

PointNet Point clouds, fundamentally, are sets of points, making it logical to design networks
capable of directly operating on sets. To handle the unordered nature of sets, these networks should
be invariant to the permutation of their input points. PointNet [17] achieves this by utilizing per-
point Multi-Layer Perceptrons (MLPs) and the max-pooling function. Both of these components
are symmetric functions that remain invariant to the order in which points are presented to the
network.

In the PointNet architecture, a linear layer is applied individually to each point within the
point cloud. Then, max-pooling is used to summarize the entire point cloud into a single vector
representation, which can be used for classification or combined with per-point features to do per-
point semantic segmentation. To ensure invariance to affine transformations, PointNet employs a
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specialized sub-network to predict an affine transformation that can be applied to the point cloud,
to transform the point cloud into a canonical pose that makes further processing easier.

Building upon PointNet, PointNet++ [27] introduces a hierarchical structure that leverages local
details within the point cloud. This hierarchy enhances the network’s ability to capture intricate
patterns and relationships within the data.

Point Convolution While structured methods impose a specific structure onto point clouds to
enable convolution operations, point convolution takes a different approach by adapting convolution
to raw point clouds. Methods like FKAConv [28] perform convolutions on the K nearest neighbours
of a given point. This convolution is achieved by introducing a projection operation that maps the
space of points to the space of the convolution kernel. This projection aligns points with a point
convolution kernel, enabling the application of the convolution operation. Since the size of this
neighbourhood can vary based on point density, normalization operations are applied to ensure
consistency and stability throughout the convolution process.

Several other approaches, such as KPConv [29], PointConv [30], and PointCNN [31], also gen-
eralize convolution to operate on individual points within point clouds.

Graph Graph-based methods treat point clouds as graphs and apply graph convolution opera-
tions. For instance, DGCNN [32] constructs a graph by connecting each point to its K nearest
neighbours and then applies a Graph Neural Network (GNN) to extract information about local
structures within the point cloud. This process generates a new feature graph, where feature vectors
become new points, and the operation can be iteratively repeated.

Other approaches also operate on K nearest neighbours graphs, such as KCNet [33], ClusterNet
[34], and PointGCN [35]. Some methods, like RG-CNN [36], use complete graphs, but this inherently
limits them to object-related tasks involving smaller point clouds.

Attention Recent advances in transformer-based models [37] have positioned transformers as es-
sential tools in various machine learning domains, including computer vision [38], [39]. Transformers
excel at processing sets of tokens, making them invariant to the permutation of their inputs.

Taking advantage of this property, Point Transformer [40] applies a transformer-based model
directly to point clouds. Similarly, Point-BERT [41] harnesses the affinity of transformer models
and adapts the self-supervised training technique from BERT [42] for point cloud data. Other
methods, such as 3DETR [43], M3DETR [44], and BEVFusion [45], also incorporate transformers
into their architecture to enhance their capabilities in processing point clouds.

4.2 3D object detection

3D object detection in point clouds is a vast domain encompassing a large range of techniques,
primarily focusing on the prediction of sets of bounding boxes. These methods can be broadly
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categorized into anchor-based and anchor-free detectors. In addition, this section explores mask-
based detection, an approach that has recently garnered significant attention in the field. The
inspiration for this section comes from the work of Guimont-Martin et al. [46], as they provide a
comprehensive overview of object detection architectures, with a special focus on the interests of
this proposal.

4.2.1 Anchor-based

Anchor-based detection methods rely on predefined box proposals, known as anchors, to predict
object location and size. These approaches can be classified into single-stage and two-stage meth-
ods. Anchors represent a set of potential object locations and sizes that serve as the foundation
for the network’s predictions. Consequently, anchors encapsulate substantial prior knowledge (i.e.,
hyperparameters) about the objects to be detected, including their location, dimensions, position
relative to the ground, and viewing angle [21]. It’s worth noting that correctly tuning these pa-
rameters is crucial, as improper tuning can lead to sub-optimal performance as the predictions are
regressed relative to the anchors.

Single-stage methods Single-stage approaches detect objects by directly regressing 3D bounding
boxes relative to detection anchors in a single step. This simplicity has led several architectures
to embrace the single-stage approach. Notable examples include VoTr-SSD [47], PointPillars [48],
3DSSD [49], SE-SSD [50], and GLENet [51].

Two-stage methods Two-stage architectures trace their origins back to the framework intro-
duced by Faster R-CNN [52]. The process begins with an initial stage that extracts regions of
interest (RoIs) proposals using a Region Proposal Network (RPN). Numerous methods have built
upon this approach, including Fast Point R-CNN [53], PV-RCNN++ [54], Voxel R-CNN [55], and
BtcDet [56] These approaches rely on anchors to define possible RoIs and may encounter similar
limitations as single-stage detectors.

4.2.2 Anchor-free

Anchor-free detectors bypass the use of anchors and instead predict keypoint locations for object
detection. In the context of 3D object detection, a common approach involves the direct prediction
of the centers of detected objects [57]–[62]. Alternatively, 3D objects can also be detected by
predicting the corners of their bounding boxes [63] or a few keypoints distributed around the shape of
vehicles [64]. Anchor-free detectors, while avoiding the drawbacks of anchors, rely on extensive post-
processing steps to extract the detections (e.g., Non-Maximum Suppression (NMS), thresholding
and max-pooling). These post-processing steps also depend on numerous hyperparameters and
design decisions that heavily impact the performances of the network [38].
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4.2.3 Mask-based Object Detection

In recent developments in computer vision, MaskFormer [65] and Mask2Former [39] have introduced
a new meta-architecture designed to predict per-instance or per-class binary masks. Inspired by
these pioneering approaches, methods such as MaskRange [66], Mask3D [67], SPFormer [68], and
MaskPLS [69] have emerged. These methods concentrate on predicting point masks to enhance
instance segmentation within point clouds.

4.3 Occlusion in Point Clouds

Occlusion poses significant challenges for a variety of 3D tasks. For instance, in grasping, partial
observation due to occlusion can hinder grasping quality [70], and improving robustness to occlusion
(by recovering the complete shape of an object from a partial view) has shown an impressive 45%
improvement over competing architectures. While this kind of task operates on simpler objects and
scenes than in autonomous vehicles, this shows that occlusion remains a serious challenge for deep
learning methods and that countering it could yield great improvements.

In the context of autonomous vehicles, occlusion is a critical challenge [1], [4]. LiDAR sensors,
in a way, provide only 2.5D information, as they return only the first point the beam hits, with
no information available behind the objects. This exacerbates the challenges posed by occlusion,
thus motivating the development of better techniques to handle occlusion correctly and efficiently.
Moreover, in contrast to other domains like geomatics, where complex outdoor scenes are also
analyzed, autonomous vehicle tasks involve highly dynamic scenes. Thus, relying solely on multi-
temporal data, as is often done in geomatics, is not sufficient, as dynamic objects are constantly
moving [71]. Autonomous vehicle tasks sit at a unique intersection where scenes are both highly
complex and dynamic, as well as requiring fast inference time for use on the road.

V2V4Real discusses the limitations of single-LiDAR scans, and one solution is to add additional
sensors using multiple vehicles (vehicle-to-vehicle (V2V)). However, this is not always feasible. Sim-
ilarly, techniques based on vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2X) propose
sensor fusion, combining on-vehicle sensors with additional sensors on road infrastructure. Again,
this may not always be a viable option. As a result, various methods have been developed to better
handle occlusion in point clouds from single-scan LiDAR data. We review here some examples of
such methods.

BtcDet [1] reconstructs occluded objects by predicting a per-voxel probability of occupancy.
The network’s objective is to predict high probabilities of occupancy for voxels where a vehicle
would be located. Thus, the network is trained to reconstruct the volume occupied by objects, even
when they are partially occluded or suffering from signal misses. The complete shape ground truth
is obtained by transforming (i.e., completing and mirroring) objects in the input point cloud to
estimate their occupied volume. This predicted 3D occupancy map is then used to refine bounding
box proposals, making object detection more precise.
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Part-A2 [72], in addition to predicting bounding boxes, also predicts a per-point intra-object
part location. For each object, the network is trained to regress the position of each point relative
to the vehicle. The location is regressed within the range of [0, 1]3 spanning the volume of the
bounding box of the vehicle. The corner (0, 0, 0) is the bottom front right corner of the box, while
(1, 1, 1) is the top rear left corner. Thus, for a point on the front bumper of a car, the intra-object
location would be predicted as close to the ground and at the front of the vehicle. This approach
encourages the network to learn features compatible with the geometry of the vehicles, even when
they are occluded. In essence, it enables the network to extract features that help understand what
points represent on the vehicle, regardless of occlusion.

SPG [73] generates points to recover missing parts of objects. These points are then combined
with the original point cloud to generate a completed point cloud, facilitating object detection.
SPG thus proposes a pre-processing technique that completes point clouds before using another
object detection architecture, such as PointPillars [21]. The point prediction module employs an
encoder-decoder framework to generate new points that complete objects.

Hu et al. [74] leverage the hidden information contained in LiDAR point clouds. When a point
is measured in 3D space, it provides information not only about the object it hit but also about the
unobstructed space between the LiDAR sensor and the impact point. Therefore, when a LiDAR
point is obtained, it implies that the space between the LiDAR and the impact point is empty. Hu
et al. [74] utilize this information to compute a visibility map through raycasting, encoding valuable
information about what is occluded or not. This information is then combined with the input point
cloud to assist in object detection.

4.4 Datasets

LiDAR datasets play a pivotal role in advancing research and development in the field of autonomous
vehicles and robotics. These datasets provide a diverse range of real-world scenarios and challenges
that enable researchers to train, validate, and benchmark their deep learning models for tasks
like object detection, segmentation, localization, and mapping. We present here some noteworthy
LiDAR datasets and summarize them in Table 1, but first let’s review what makes autonomous
vehicle datasets stand apart from other point cloud datasets.

LiDAR datasets for autonomous vehicles contrast sharply with other types of point cloud
datasets. Object datasets are collections of point clouds generated from scanned objects [7], [8].
Being generated from scans, they contain points from all around the objects and are thus way
simpler to handle than outdoor scenes encountered in autonomous driving scenarios. Indoor point
cloud datasets are also simpler because indoor point clouds often have less variability of object
types and denser point clouds [3]. Autonomous vehicle datasets, which are the main interest of this
proposition, are typically sparser (as the range is larger) and entail much more complexity.

KITTI The KITTI dataset [75] is a widely recognized benchmark for 3D object detection and
tracking in autonomous driving. It includes LiDAR data, stereo images, and annotations for object
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instances in urban driving scenarios. The dataset contains 16 124 instances in the training set, and
16 608 in the validation set.

SemanticKITTI Building upon the foundation of KITTI, SemanticKITTI [5] includes full se-
mantic and instance-level annotations for LiDAR scans. This dataset enables semantic segmen-
tation, instance segmentation, and object detection tasks using LiDAR data. SemanticKITTI
comprises a total of 22 sequences, with roughly 45 000 scans available

KITTI-360 Liao et al. [11] introduced KITTI-360 as a successor to the original KITTI dataset.
This evolution incorporates several enhancements, such as additional input modalities and more
comprehensive semantic annotations, making it a versatile resource for advancing research in au-
tonomous driving and robotics.

Waymo Open Dataset The Waymo Open Dataset [76] offers a large-scale LiDAR dataset cap-
tured from self-driving vehicles in diverse scenarios. Its primary strength lies in its vast scale and
variety, making it an invaluable resource for researchers in the field.

nuScenes Comprising 1000 driving scenes captured in urban environments across Boston and
Singapore, nuScenes [77] provides a wealth of data for autonomous driving research. It offers
semantic, instance, and bounding box annotations to facilitate a wide range of experiments.

Argoverse2 Argoverse2 [12] is a recent development in autonomous vehicle datasets, distin-
guished by its emphasis on capturing interesting and complex driving scenarios. This dataset
also stands out for its diversity, as it gathers data from six cities in the United States and provides
detailed bounding box annotations.

V2V4Real V2V4Real [4] presents a novel prospect for V2V. Unlike many V2V datasets that rely
on simulations, V2V4Real employs two vehicles, enabling data collection from distinct viewpoints.
This unique setup facilitates the capture of occluded regions that might be inaccessible to a single
sensor. It’s important to note that the annotation in V2V4Real focuses exclusively on vehicles,
omitting pedestrians and cyclists.

A9 Intersection Building upon the A9-Dataset [78], A9 Intersection [79] provides valuable data
from a unique perspective: the road infrastructure. Specifically, the A9 Intersection collects point
clouds from LiDAR affixed to a gantry. Unlike traditional datasets that focus solely on sensor data
from vehicles, A9 Intersection explores the possibilities of V2I techniques by relying on sensors
embedded in the infrastructure itself. The dataset included calibration between LiDARs and offers
57.4k 3D box labels.
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OPV2V OPV2V [80] is a V2V dataset generated from a simulator. This dataset is generated
using the CARLA simulator [81], a widely acclaimed platform for simulating autonomous driving
scenarios. OPV2V simulates multiple vehicles at a time to capture LiDAR data from multiple
viewpoints. The dataset contains approximately 11.5k frames and over 200k vehicle bounding
boxes.

V2X-Sim In a similar fashion to the OPV2V dataset, V2X-Sim [82] is another simulation-based
dataset. While OPV2V primarily focuses on simulating multiple vehicles within a scene (V2V),
V2X-Sim takes a more holistic approach by incorporating not only V2V but also the integration
of roadside units, which collect data from an infrastructure perspective (V2I). This amalgama-
tion of both V2V and V2I communication is commonly referred to as V2X. V2X-Sim contains
approximately 11k frames.

DAIR-V2X In a significant departure from simulation-based datasets like OPV2V and V2X-Sim,
DAIR-V2X, as introduced byYu et al. [83], takes a bold leap into the real world to provide a dataset
for V2X. What sets DAIR-V2X apart is its incorporation of not just vehicular sensors but also the
utilization of infrastructure sensors. This dataset contains approximately 39k frames.

A*3D The A*3D dataset, introduced by Pham et al. [84], offers a unique collection of data under
challenging conditions. This dataset encompasses a wide range of scenarios, including diverse scenes,
varying times of the day, and different weather conditions. Notably, it is designed to include more
instances of occlusion, a higher proportion of nighttime frames, and a variety of environmental
settings. In total, the A*3D dataset contains seven distinct classes and an impressive collection
of approximately 230 000 frames. However, it’s worth noting that the dataset is annotated at
a relatively low frequency of 0.2Hz. This sparse annotation frequency can present challenges,
particularly for tasks that rely heavily on temporal information. Nonetheless, the dataset’s diverse
and challenging conditions make it a valuable resource for research and development in the field of
3D object detection and related areas.
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Table 1: Comparative table for 3D point cloud datasets. We present here some publicly available datasets, highlighting
their key characteristics. We sourced information regarding the number of frames and geographical origins from the research
works of Laflamme et al. [85] and Xu et al. [4]. These datasets fall into three categories: (i) Ego datasets when the point
clouds are captured from the vehicle’s perspective; (ii) V2V when multiple vehicles are capturing point clouds concurrently;
and (iii) V2I in which sensors installed on infrastructure (e.g., gantries) are used for data collection.

Dataset Year Source Type #Frames (k) Location

KITTI [75] 2013 Real Ego 15 Karlsruhe

nuScenes [77] 2019 Real Ego 40 Boston, Singapore

SemanticKITTI [5] 2019 Real Ego 43.6 Karlsruhe

Waymo Open Dataset [76] 2019 Real Ego 200 United States

A*3D [84] 2020 Real Ego 39 Singapore

KITTI-360 [11] 2022 Real Ego 80 Karlsruhe

A9-Dataset [78] 2022 Real Ego 0.5 Munich

OPV2V [80] 2022 Sim V2V 11 CARLA [81]

V2X-Sim [82] 2022 Sim V2V & V2I 10 CARLA

DAIR-V2X [83] 2022 Real V2I 39 Beijing, CN

Argoverse2 [12] 2023 Real Ego 6000 United States

V2V4Real [4] 2023 Real V2V 20 Ohio

A9 Intersection [79] 2023 Real Ego 4.8 Munich
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5 Objectives and Methodology

This proposal focuses on investigating the concept of occlusion within 3D LiDAR point clouds for
object detection, specifically autonomous vehicle applications. As discussed in Section 2.2, occlusion
presents significant challenges for deep learning methods when processing point clouds. There are
two main types of occlusion to consider. Firstly, self-occlusion occurs when the near side of an object
hides its far side, and this is unavoidable in single-scan LiDAR point clouds. Secondly, external-
occlusion happens when obstacles block the laser from reaching the objects, resulting in occluded
regions where no points for entire regions of the point cloud. Additionally, incomplete LiDAR scans
can occur due to signal misses caused by the laser beam being reflected away from the sensor due
to the low reflectance of surfaces. These various types of occlusion and signal miss significantly
exacerbate the challenges associated with object detection in point clouds [1]. While occlusion has
been extensively studied in objects and indoor datasets with readily available complete ground truth
data, there is a significant research gap in addressing these challenges for outdoor scenes due to
their complexity and lack of ground truth data. The complexity inherent in outdoor environments,
particularly urban landscapes, contrasts sharply with the relative simplicity characterizing indoor
spaces like rooms and buildings [3]. This complexity lends itself to unique challenges in applying
deep learning techniques to outdoor scenarios, further underscoring the need to address occlusion
challenges in such intricate settings.

The main goal of this proposal, which comprises three projects, is to develop novel neural net-
work architectures and innovative techniques to improve LiDAR-based object detection in occluded
scenarios. The first project, discussed in Section 5.1, aims to address occlusion within LiDAR point
clouds by training a neural network to simultaneously detect and complete objects using BEV
instance masks. The second objective, outlined in Section 5.2, is to create a novel multi-LiDAR
dataset in an urban context. The novelty of this dataset lies in providing occlusion-free point
clouds in complex real-world scenarios, thus offering a unique platform for exploring the influence
of occlusion on object detectors. The third project, detailed in Section 5.3, is to develop a novel
multi-modal self-supervised learning algorithm using the multi-LiDAR point clouds dataset devel-
oped in the second project. Finally, Section 5.4 details the resources required to fulfill the proposed
projects.

5.1 Joint Object Detection and Completion

Occlusion poses a significant challenge in deep learning applications on single-scan LiDAR point
clouds. It causes objects to appear incomplete in scans, thus impacting the accuracy of object
detection algorithms [1]. The first project of this proposal aims to address the issue of occlusion by
simultaneously detecting and completing objects in LiDAR point clouds.

One effective approach to handle this challenge is to harness the BEV representation, which
naturally suits object detection for autonomous vehicles [18]. Through the formulation of the
object detection task into a binary mask prediction framework, the proposed method, referred to as
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MaskBEV, predicts a set of BEV instance masks corresponding to the complete footprint of each
detected vehicle within a LiDAR scan. We specifically focus on the detection of vehicles due to
their larger dimensions, rendering the accurate determination of their actual footprint challenging
due to self-occlusion.

Figure 4 illustrates MaskBEV’s main ideas. Specifically, Figure 4a shows the mask ground truths
overlayed on the BEV input point cloud. Figure 4b shows MaskBEV’s output, a set of binary masks
representing the completed footprint of vehicles. Each instance is predicted on a separate mask,
here shown using different colours. The predicted masks accurately capture the complete footprint
of vehicles, even with partial information (i.e., occluded point cloud) about the objects’ dimensions
and shapes. Figure 4c-h displays the individual raw mask prediction from MaskBEV before the
binarization. Each mask prediction only detects a single instance (i.e., the white outlines) and
actively suppresses the detection of other instances (i.e., the black outlines). Using this framework,
MaskBEV is trained to fight the effects of occlusion by actively predicting the complete footprint
of objects from occluded point clouds.

(c) (d)

(a) (b)

(e)

(f) (g) (h)

Figure 4: Mask prediction from MaskBEV. (a) Ground truth masks of vehicles’ footprints overlayed
over a BEV point cloud from the validation set of SemanticKITTI. (b) Mask predictions from MaskBEV.
Each vehicle is represented by a distinct mask, distinguished here by different colours. (c-h) Raw mask
predictions from MaskBEV, showing the normalized raw scores predicted by the network. Each mask
corresponds to a single instance, visible as a white outline. Black outlines represent vehicles that were
detected but actively suppressed by the network for a particular mask, indicating that each mask specializes
in detecting only one instance and suppresses others. Figure reproduced from [46] © 2023 IEEE.

As a testament to its advancement, the first part of this project has been accepted to IROS
2023, the IEEE/RSJ International Conference on Intelligent Robots and Systems, under the title
“MaskBEV: Joint Object Detection and Footprint Completion for Bird’s-eye View 3D Point Clouds”
[46]. We give here an overview of the article and its main contributions.
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Firstly, since MaskBEV requires mask ground truth for training, we discuss the mask generation
process in Section 5.1.1. Secondly, we give an overview of MaskBEV’s architecture in Section 5.1.2.
Section 5.1.3 discusses the future works we wish to accomplish on MaskBEV. Finally, the main
contributions of this first project are detailed in Section 5.1.4, while the envisioned schedule for
their realization is presented in Section 5.1.5.

5.1.1 Ground Truth Masks Generation

MaskBEV requires BEV instance masks for training. From a BEV perspective, an object’s footprint
is defined as the space it occupies when orthogonally projected onto the ground plane. The ground
truth masks are complete, meaning that they accurately represent the full physical footprint of
the instance, and not only the footprint of what is visible from a single scan. BEV masks are not
commonly available in datasets, to overcome this limitation, we propose an instance mask generation
algorithm that generates complete BEV masks from readily available labels. Our mask generation
algorithm can produce BEV instance masks from bounding boxes or semantic labels.

For instances annotated with bounding boxes, the process involves extracting 3D bounding
boxes, akin to the ones available in datasets such as KITTI [75], and projecting these boxes orthog-
onally onto the ground plane. This process yields, for each LiDAR scan, a set of binary images on
which a single instance — a rectangle — is drawn. The masks generated in this manner lose most
of the objects’ fine geometry. An example of bounding boxes, and their resulting masks, are shown
in Figure 5.

(a) (b)

Figure 5: Mask generation from bounding box labels. (a) Point cloud from Waymo Open Dataset
[76] with bounding boxes drawn around cars. (b) Resulting masks generated from the bounding boxes in
(a) Each instance corresponds to a distinct mask, shown here in one image for simplicity.

For semantically annotated datasets, such as SemanticKITTI [5], we employ a different approach
to generate instance masks. We voxelize the point cloud and use the voxels containing instance
points to estimate the objects’ footprint, by projecting them onto the ground plane. However,
as shown in Figure 6a, the point clouds captured from a LiDAR only capture the LiDAR-facing
side of objects. As a result, our algorithm would generate incomplete masks (i.e., masks that do
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not represent the full footprint of instances), as illustrated in Figure 6b. Across all instances in
SemanticKITTI‘s validation split, the average ratio between single-scan (i.e.,incomplete masks) and
the full footprint is approximately 40% [46]. This metric underscores that points acquired from a
single scan only represent around 40% of the complete footprint of an instance.

To address this limitation and achieve more accurate masks, we merge multiple sequential LiDAR
scans into a map of the environment using their relative pose. This merging process creates a point
cloud with points from various viewpoints, allowing us to gather information from all around static
vehicles, as depicted in Figure 6c. With this merged point cloud, we can then generate complete
instance masks, as shown in Figure 6d. As expected, the resulting mask is now complete and
accurately estimates the real footprint of the vehicles. These masks are more precise and can
capture object geometries beyond mere rectangles. It is important to emphasize that, despite the
use of multiple point clouds for mask generation, the network only receives a single scan as input.
Since the masks are generated from the merged point cloud, we exclusively use static objects to
train the network. It is worth noting that, although training exclusively features static objects,
MaskBEV retains its capacity to detect moving vehicles within the validation set.
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Other scan points
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(b)

Figure 6: Mask generation from instance label. (a) Point cloud generated from a single LiDAR scan.
Red points denote a car, highlighting that solely LiDAR-facing surfaces are visible. (b) Corresponding mask
generated from the scan in (a). This mask is partial, failing to encapsulate the full instance footprint. (c)
Merged point clouds from successive LiDAR scans. Using multiple scans allows us to gather points from
various perspectives, including all sides of vehicles. (d) Resulting mask derived from the merged point
cloud in (c). The mask is complete, i.e., it represents the entire footprint of the vehicle. Figure reproduced
from [46] © 2023 IEEE.

5.1.2 MaskBEV

As outlined in Section 5.1, MaskBEV offers an innovative approach to object detection in LiDAR
point clouds by predicting BEV instance masks using the Mask2Former framework [39]. This
approach diverges from the prevalent focus on bounding box predictions in recent object detection
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research for LiDAR point clouds presented in Section 4.2. Modern object detection techniques in
LiDAR point clouds often revolve around predicting bounding boxes, necessitating substantial prior
knowledge about the target objects to achieve accurate results. Both anchor-based and anchor-free
detectors demand the use of anchor boxes or intricate post-processing steps, introducing complexities
and requiring the tuning of various hyperparameters.

Anchor-based detectors, including single-stage and two-stage variants, rely on numerous anchor
boxes to encompass all possible object dimensions and locations. These anchor boxes come with var-
ious hyperparameters that need tuning for achieving satisfactory performance, such as dimensions,
aspect ratio, and the number of boxes [86].

Anchor-free detectors forgo the use of anchor boxes but instead rely on post-processing steps,
such as non-maximum suppression, thresholding, and max-pooling to refine predictions [38]. These
post-processing steps necessitate their own set of parameters and design decisions, further requiring
fine-tuning.

By contrast, MaskBEV capitalizes on Mask2Former to predict a set of BEV instance masks,
MaskBEV circumvents these limitations for object detection in point clouds. MaskBEV’s approach
bypasses the need for anchors and intricate post-processing, resulting in a more streamlined and
efficient object detection framework.

An overview of MaskBEV’s architecture is presented in Figure 7. The architecture comprises
two core components: an encoder and a mask-prediction module. The encoder transforms 3D point
clouds into 2D BEV feature maps, effectively transposing 3D detection into a computer vision task.
The encoder sparsely voxelize the input point clouds into pillars, similarly to [21]. Then, each
pillar is encoded using a multilayer PointNet [17]. The mask-prediction module then generates a
collection of up to M masks, alongside their associated class (i.e., a binary classification of whether
there is a car or not in the corresponding mask). For more in-depth information, Guimont-Martin
et al. [46] provides further details on the MaskBEV architecture.

5.1.3 Analysis of the network

While the initial stages of this project were accepted at the IEEE/RSJ International Conference
on Intelligent Robots and Systems, we aim to extend the study of MaskBEV further. Our primary
objective is to undertake a comprehensive ablation study of the MaskBEV network and the associ-
ated training methodologies. This study aims to elucidate the impact of key components including
the encoder, backbone, and mask-prediction modules. Regarding the encoder, we intend to explore
various types of encoder networks. Currently, the encoder employs a per voxel multi-layer PointNet
[17], and we plan to investigate alternative approaches, such as point convolution, graph-based, and
attention-based methods. Additionally, we will subject the detection head to ablation experiments
to assess its influence on the overall system performance and compare it with anchor-based and
anchor-free approaches. We hypothesize that MaskBEV’s performance could significantly improve
with larger datasets as seen in computer vision [87], as its transformer-based architecture reduces
inductive biases compared to predefined rectangular anchors. We thus wish to extend MaskBEV

23/51



Seeing Through Occlusion: Innovative Techniques for Reliable LiDAR-based Object Detection

Figure 7: MaskBEV complete architecture. MaskBEV is comprised of two main components: an
encoder and a mask-prediction module. The encoder transforms 3D point clouds into BEV feature maps.
The mask-predicting module, then predicts a set of classes and BEV masks using Mask2Former [39]. Figure
reproduced from [46] © 2023 IEEE.

on larger datasets such as Waymo Open Dataset [76] and nuScenes [77]. An essential aspect of our
future investigation is to analyze how the network leverages scene structure since it is useful for
completing occluded objects.

Our working hypothesis is that detection is conditioned by both the local features (i.e., the
points) and the global structure of the scene (i.e., capturing spatial organization). Given the
transformer-based’s larger receptive fields [88], we conjecture that these models can more effectively
harness global scene structure to enhance detection performance. To validate this hypothesis, we will
conduct data augmentation experiments, introducing disruptions to local patterns (e.g., point jitter)
or distortions to the global structure (e.g., randomly placing objects within the scene, deliberately
out of place). Furthermore, we aim to thoroughly assess the robustness of MaskBEV in handling
occlusion. This entails computing the detection metrics with respect to various levels of occlusion
and simulating occlusion to the scene using data (i.e., adding occlusion by removing frustums of
points in LiDAR scans) to glean insights into system performance under diverse scenarios and
conditions.

5.1.4 Objectives

To summarize, the proposed contributions of this first project are:

• a reformulation of object detection in point clouds using mask prediction;

• a novel architecture, MaskBEV;

• an evaluation and ablation study of MaskBEV on various autonomous vehicle datasets; and

• a study of how MaskBEV can leverage both local and global features.
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5.1.5 Schedule

The realization of this first project is divided into several tasks described below.

O1 : Joint Object Detection and Completion

P1.1 Generation of a BEV mask dataset (completed);

P1.2 Development of the architecture (completed);

P1.3 Benchmark on multiple datasets (Conference publication 1) (completed); and

P1.4 Ablation study and further analysis (Journal publication 1)

Details of the schedules for these tasks are provided in Section 6 within the timeline of this
proposal.

5.2 Multi-LiDAR BEV Dataset

As discussed in Section 4.4, most autonomous vehicle datasets are derived from single-vehicle
sources. This often leads to point cloud data that is riddled with occlusions and limited in terms
of short-range perception [4]. On the other hand, datasets that do involve multiple LiDAR scan-
ners are typically generated using LiDAR simulators, which often fail to capture the complexity
of real-world scenarios both in terms of object types (i.e., the real world is an open set object
detection task, which is not possible in simulation) and scenes structure. To address these limi-
tations, recent datasets like V2V4Real [4] used multiple vehicles to capture point clouds from two
viewpoints concurrently, allowing each vehicle to capture what might be occluded from the other’s
perspective. However, V2V4Real has its own set of limitations. Firstly, it confines the relative
position of each vehicle to be one directly in front of the other, consequently limiting the amount
of data showcasing side-to-side views. Secondly, the dataset only includes annotations for vehicles,
omitting more complex objects such as pedestrians and cyclists. In light of these shortcomings, our
objective is to create an innovative dataset that addresses these limitations and offers new data
collection techniques. The second project in this proposal encompasses two main objectives: the
creation of a novel mask dataset derived from V2V4Real, named Masks4Real, and the development
of a new dataset capturing point clouds from multiple angles, termed the BEVOcc dataset.

Masks4Real will harness the two viewpoints of V2V4Real to overcome the limitation of the mask
generation algorithm of MaskBEV presented in Section 5.1.1. The additional viewpoint will help
capture the occluded portions of objects, enabling the generation of masks for dynamic vehicles.

The BEVOcc dataset is designed to address the limitations of existing autonomous vehicle
datasets, particularly in terms of occlusions, viewpoints and object types. While V2V4Real pre-
dominantly captures data with LiDARs positioned from front to back, essentially one car following
the other, our dataset takes a different approach. We focus on a side-by-side arrangement of Li-
DARs, enabling us to provide complementary perspectives to V2V4Real. This side view is crucial
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because it captures objects that may remain occluded in V2V4Real. Moreover, BEVOcc will provide
labels for cyclists and pedestrians. This broader annotation scope will enable the generalization of
approaches like MaskBEV, discussed in Section 5.1, to different classes of objects and dynamic ob-
jects. BEVOcc will be collected using a static LiDARs setup that captures vehicles from both sides
of the streets, enabling the generation of point clouds with less occlusion. Additionally, the dataset
incorporates an aerial camera viewpoint, embracing the BEV perspective literally. This aerial per-
spective provides valuable ground truth information regarding objects’ footprints, streamlining the
annotation process. To further expedite the annotation process, we will leverage state-of-the-art
computer vision models such as SAM [89]. These models will generate initial labels, which can then
be refined and seamlessly projected onto the point clouds. This ease of annotation is facilitated by
the alignment of the BEV viewpoint with the point clouds captured using the static LiDAR setup.

Moreover, this dataset will facilitate investigations into how a smaller, cost-effective, and com-
plementary dataset can enhance object detection performance for point clouds object detection.
We plan to strategically gather data to address weaknesses or limitations present in various existing
datasets. To mine a diverse range of interesting scenarios, the BEVOcc dataset will be collected in
busy streets, intersections, and city centers. This approach aligns with previous work, such as [12],
which underscores the benefits of focusing on intriguing scenarios in autonomous vehicle datasets.

Furthermore, the BEVOcc dataset aims to explore multi-modality by incorporating additional
sensors. This could involve polarized cameras, super-resolution imaging, hyperspectral cameras, and
other sensing modalities. This will enable future work on co-training and self-supervised learning
to harness the potential benefits of combining data from multiple sources during training.

To summarize, the first goal is to derive a new mask dataset from V2V4Real, described in
Section 5.2.1. This dataset aims to enhance the performance of mask-based object detection,
especially for moving vehicles. The second goal is to complement the existing data landscape with
a new multi-angular LiDAR dataset, referred to as the BEVOcc dataset, which will be detailed
in Section 5.2.2. The data collection for the BEVOcc dataset involves careful sensor calibration,
which will be discussed in Section 5.2.4. Furthermore, the acquisition pipeline will be detailed in
Section 5.2.3. The development of an annotation pipeline to provide precise annotations for various
objects in the dataset will be described in Section 5.2.5. Finally, the effectiveness of the BEVOcc
dataset will be evaluated by benchmarking against current state-of-the-art models and integrating
the new data, as discussed in Section 5.2.7.

5.2.1 Masks4Real: a mask dataset using V2V4Real

The first step of this project involves the creation of a new BEV masks dataset named Masks4Real,
which is derived from the V2V4Real dataset. In MaskBEV, due to the need to use sequential
LiDAR scans to gather points around from all sides of objects, we were limited to only training on
static objects. However, since V2V4Real uses two LiDARs, resulting in two distinct viewpoints of
objects in the scene, this allows for the generation of masks, even for dynamic objects.
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The Masks4Real dataset addresses the primary limitation of MaskBEV’s training by allowing
the application of the mask generation algorithm presented in Section 5.1.1 to moving vehicles.
Since V2V4Real provides bounding box annotations for various vehicle types (cars, vans, pickup
trucks, semi-trucks, and buses), the Masks4Real dataset will allow the generation of masks through
two main methods: bounding box projection and point projection.

For the masks generated from bounding boxes, we will project the annotations onto the ground
plane. We will utilize data from both LiDAR scans of the vehicles, effectively doubling the avail-
able mask labels from V2V4Real. For masks generated from points, we need to adapt the mask
generation algorithm from MaskBEV to account for the dual viewpoint data from V2V4Real. This
process will involve detecting the ground plane (which can be achieved by excluding points below a
certain height threshold), extracting points within each bounding box from both scans and applying
MaskBEV’s algorithm to generate masks.

The resulting Masks4Real dataset will serve as training data for MaskBEV, providing training
samples for moving objects. The inclusion of both bounding box-generated and point-generated
masks in this dataset will allow a comparative analysis of each method’s performance. Addition-
ally, the Masks4Real dataset will serve as the foundation to which BEVOcc’s data will be added,
contributing to the enhancement of mask-based object detection in point clouds.

5.2.2 Bird’s-Eye View Occlusion (BEVOcc)

The BEVOcc dataset aims to leverage the use of multiple LiDARs to capture street scenes from
multiple viewpoints, thereby providing point clouds with minimal occlusion. To obtain a complete
view of the scene, an aerial perspective will be captured using a BEV camera, taking the bird’s-eye
view (BEV) perspective literally. This camera can be mounted on a drone, positioned at a high
vantage point, or affixed to a tall tripod. This would generate a view BEV similar to Krajewski et
al. [90]. For the sake of brevity and clarity, we will henceforth refer to this BEV camera as using
a drone in the context of this proposal. This aerial viewpoint will facilitate the annotation process
by providing ground truth information about the exact positions and dimensions of objects, which
can then be projected back into the point clouds. By leveraging the static nature of our setup, this
approach ensures accurate annotation and simplifies greatly the annotation process. In addition to
LiDAR sensors, the BEVOcc dataset will incorporate other sensors to explore multi-modal learning.
For each LiDAR, there will be a corresponding camera that captures visual information about the
scenes. A polarized camera will also be integrated into the setup, which offers valuable informa-
tion about surfaces, including their physical properties, orientation, reflection angle, and degree of
polarization [91]. Furthermore, the BEVOcc dataset will include hyperspectral cameras to capture
unique spectral signatures of objects, facilitating advanced material and object recognition [92].

The BEVOcc dataset will contribute to addressing limitations present in existing datasets and
enable the exploration of multi-modal learning techniques, as outlined in our third objective dis-
cussed in Section 5.3.
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Figure 8 shows the dataset collection setup using two acquisition units U1 and U2. This arrange-
ment will allow the collection of points from both sides of vehicles, thus providing ground truth
information about the complete object’s geometry. In addition to LiDARs, other sensors, described
in Section 5.2.3, are used to capture additional modalities. The data collection will be done in var-
ious weather conditions and scene types, including low and high-traffic scenarios, pedestrian areas,
and complex urban environments, with a focus on capturing busy streets with intricate occlusion
scenarios involving cars, cyclists and pedestrians.

Figure 8: Example of BEVOcc data collection setup. Multiple acquisition units, denoted as Ui, are
placed on different sides of streets. This setup allows for the capture of points from multiple viewpoints
around objects, illustrated by crosses and circles. Alongside LiDARs, denoted as Li, cameras (Ci) capture
visual information about the scene. Additional sensors, including polarized cameras (Pi), hyper-spectral
cameras (HSi), and super-resolution imaging devices (SRi), are incorporated into each acquisition unit. A
camera denoted as D captures an aerial view of the scene from a BEV perspective.

5.2.3 Acquisition

The acquisition pipeline is illustrated in Figure 9. The pipeline will use the Robot Operating Sys-
tem (ROS) framework for communication and data recording using the rosbag tools. The system

28/51



Seeing Through Occlusion: Innovative Techniques for Reliable LiDAR-based Object Detection

consists of multiple acquisition units connected to a central base computer for control. Each acqui-
sition unit is equipped with LiDAR, cameras, and various additional sensors, including polarized
cameras (Blackfly S USB3 from Teledyne FLIR), super-resolution cameras, and hyperspectral cam-
eras. These sensors are rigidly mounted together, as the sensor stick used in Helmberger et al. [93],
to simplify the inter-sensor calibration process described in Section 5.2.4.

Each acquisition unit establishes a wireless connection to a base station, which is controlled by
the central base computer. To avoid wireless throughput issues, each unit records its data locally
onto its storage device (typically an SSD). Lower-frequency data will be transmitted to the base
station for monitoring the data acquisition process.

The base station consists of a computer, a Wi-Fi access point for sending commands to ac-
quisition units, and a GPS-based Network Time Protocol (NTP) server to ensure accurate timing
information. The drone employed in the setup is the DJI Mini 2 1, controlled using a smartphone.
This model, manufactured by DJI, is equipped with features that make it well-suited for data ac-
quisition tasks. Notably, the drone features built-in stabilization through a gimbal, enhancing the
stability of data collection activities. It is capable of recording high-quality video, offering options
such as 4K (3840× 2160) video recording at 30Hz or 2.7K (2720× 1530) video recording at 60Hz.

Onboard
Computer

Base Station

Acquisition Unit Drone

Local Storage
(SSD)

DJI Mini 2

Smartphone

Save rosbag

Send commands Receive sensor data

Control

Computer
Wi-Fi

Access Point
GPS NTP

Figure 9: Data flow of the proposed acquisition system. The base station includes a laptop
computer, a Wi-Fi access point for connecting to acquisition units, and a GPS NTP server for precise
timing. An example acquisition unit Ui is shown, gathering data from all its sensors (LiDAR Li, camera
Ci, polarized camera Pi, hyperspectral camera HSi, and super-resolution camera SRi) using an onboard
Jetson Nano computer. The acquisition unit records data in rosbag format onto a local SSD. The drone,
a DJI Mini 2, is controlled using a smartphone.

The design of the acquisition units will be created using computer-aided design (CAD) software.
These units will be designed to be easily expandable for adding additional sensors as required, such
as solid-state lidars or event cameras. CAD files of the acquisition units will be made publicly
available to facilitate wider adoption and future modifications.

1dji.com/ca/mini-2
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5.2.4 Calibration

The calibration process for the multi-sensor acquisition system involves several steps to ensure
accurate and consistent data alignment. This section outlines the calibration procedures for both
intrinsic and extrinsic calibrations, as well as the calibration between different acquisition units.

Acquisition Unit Calibration Each sensor within an acquisition unit requires intrinsic cali-
bration to correct for its internal parameters. Additionally, the sensors need to be extrinsically
calibrated with respect to the LiDAR, which is the referential of each unit. For cameras, a chess-
board pattern will be used for calibration. To achieve extrinsic calibration between the LiDAR and
camera sensors within each unit, a target-based calibration method [94] will be employed. This will
yield the homogeneous transformation matrix between the LiDAR’s origin and the camera’s view-
point. Given the rigid attachment of sensors within each unit, the camera-LiDAR calibration can
be performed off-field before deployment. Existing tools such as CalibrationTools 2 from TIER IV,
Inc., SensorsCalibration 3 from Shanghai AI Laboratory, or the ROS package cam lidar calibration
[95] 4 can be used for the camera-LiDAR calibration process.

Time Synchronization Each acquisition unit will be synchronized with the base station using
the NTP protocol, employing the chrony 5 tool. To ensure synchronization between the drone’s
image data and the base station, GPS time will be used, as obtained from a GPS NTP Network
Time Server on the base station.

Extrinsic Calibration Between Units Once each acquisition unit is individually calibrated,
the next step involves determining the extrinsic calibration between the units while gathering data.
We start by picking one acquisition unit, U1, as a reference point from which all other positions
will be relative. The first step is to align the LiDAR’s ground plane of U1 with the z = 0 plane
using CalibrationTools. Drawing inspiration from [96], LB-L2L-Calib [97] will be employed for the
relative calibration of LiDAR sensors. This technique uses a calibration sphere that is moved within
the field of view of all LiDARs. During the acquisition process, we will move into the field of view
of both acquisition units with the sphere to allow the calibration of the relative position between
the units. Alternatively, the iterative closest point (ICP) matching algorithm from libpointmatcher
[98] can be employed for matching static point clouds captured by different LiDARs. In both cases,
this calibration process yields homogeneous transformation matrices representing the pose of each
LiDAR relative to a reference LiDAR, U1.

2CalibrationTools
3github.com/PJLab-ADG/SensorsCalibration
4github.com/acfr/cam lidar calibration
5chrony-project.org
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Drone Calibration The drone’s camera will also be calibrated using a chessboard pattern. The
relative position of the aerial drone with respect to U1 will be computed using large visual fiducials,
such as AprilTags [99], placed on top of the acquisition units. These fiducials will allow accurate
localization of the drone relative to the acquisition units. Figure 10 shows an example of a drone
picture taken at an altitude of 50m, which is necessary to capture large streets such as Boulevard
Laurier near Laval University’s campus. The AprilTag, with an approximate side length of 0.5m,
on the picnic table in the picture can be detected, and thus used for localization. The tag used for
the acquisition units will be larger, and in most cases seen from a lower altitude (i.e., around 25m
for most streets), thus allowing for more precise localization.

Figure 10: Example of an aerial image taken from a drone. Picture taken from a DJI Mini 2 drone
flying at an altitude of 50m above the Grand Axe on Laval University’s campus. The bicycle lanes visible
on both sides of the images are approximately 50m apart. The AprilTag on the picnic table is detectable
from this picture and will be made bigger for the data collection process.

All extrinsic calibration processes described above will yield homogeneous transformation ma-
trices. Given two referential U1 and U2,

U1
U2H the pose of U2 in U1’s referential, and an homogeneous

point U2P =
(
x y z 1

)
in U2’s referential, it is possible to find U1P , the position of the same

point in U1’s referential.

The extrinsic calibration matrix between U1 and U2 will have the following form

U1
U2H =

(
R3×3 T3×1

01×3 1

)
,
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where R3×3 is the rotation matrix between the referential and T3×1 is the position of U2 in U1’s
referential. We can then transform the point U2P into U1’s referential using

U1P =U1
U2 HU2P . This

will allow us to transform all points in U1’s referential to simplify the annotation process.

5.2.5 Annotation

The annotation process for the proposed dataset is outlined in Figure 11. The key idea is to utilize
the aerial camera data from the drone to detect objects of interest and then project these detections
onto the ground plane in the point cloud. This approach enables the generation of annotations
such as bounding boxes, BEV masks, or per-point semantic and instance labels at a relatively low
annotation cost. The annotations can be refined using an algorithm similar to Krajewski et al. [90]
that uses consecutive frames to reduce false positive detections in BEV highway images.

Point Cloud

Sequence of
Point Clouds

Dynamic Object
Detection

Mask
Projection

Object
Detector

AprilTag
Detector

Tag
Detections

Mask
Detections

Pose
Estimation

Drone Image

Annotated
Point Cloud

Figure 11: Annotation process of the proposed dataset. Object detections from the drone’s image
are projected onto the point cloud using the drone’s pose determined from AprilTags on each acquisition
unit. The projections are further refined using dynamic objects detected within the entire acquisition
sequence.

The annotation pipeline involves several steps to achieve accurate annotations within the point
cloud. We describe here the outline of each step.

1. Find the ground plane in U1’s referential using the LiDAR point cloud.

2. Detect AprilTags in the aerial image captured by the drone.

3. Estimate the drone’s pose relative to acquisition unit U1 using the detected AprilTags.

4. Detect objects in the drone’s image using a state-of-the-art computer vision object detector.

5. Project the object detections from the image onto the point cloud using the drone’s pose
information and intrinsic calibration, as done in Côté et al. [100].

6. Refine the projected annotations using dynamic object information found throughout the
acquisition sequence.
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7. Extract points above the projected annotation and derive semantic, bounding box and mask
annotations.

8. Manually validate the annotations to remove any errors using tools like SUSTechPOINTS 6

The annotation process is further clarified with pseudocode in Algorithm 1. Figure 12 illustrates
the projection of image labels onto the point cloud, detailing the steps for projecting annotations
from the drone’s image onto the ground plane of the point cloud.

Algorithm 1 Pseudocode of the annotation process

Input: P the point cloud to be annotated, the drone’s image I, a sequence S of LiDAR scans, the
intrinsic calibration of the drone’s camera C

Output: Annotation for P
G← Detect ground plane in P using the sequence S
Dobj ← Find dynamic objects in P using the sequence S
T ← Detect AprilTags in I
D ← Estimate the pose of the drone using T
O ← Find objects in I using a state-of-the-art object detector
M ← Empty array of size length(O)
i← 1
for all o ∈ O do

m← Project o onto the ground plane G using C and D
m′ ← Refine projection using Dobj

p← Extract points above the ground plan and within m′

m′′ ← Derive bounding box, semantic and mask annotations from p
M [i]← m′′

i← i+ 1
end for
return M

5.2.6 Development kit

To facilitate the wider adoption of the BEVOcc dataset within the research community, we intend
to release a dedicated Python development kit. This kit aims to simplify the process of accessing
and effectively utilizing the dataset, regardless of the specific deep learning framework chosen by
researchers. The development kit will be made available on the Python Package Index (PyPI) 7 for
easy installation and integration. By providing a consistent and unified interface for accessing and
processing the BEVOcc dataset, the development kit aims to lower the entry barrier for researchers
while enhancing the dataset’s usability and impact in the field.

6github.com/naurril/SUSTechPOINTS
7pypi.org/
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Image Plane

Optical
Axis

Figure 12: Projection of image labels onto the point cloud. We show here a simplified 2D version
of the projection, which is trivially generalizable to 3D. Given the drone’s position D and its intrinsic
calibration (focal length f of the camera), we project an annotation from position u in the image (relative
to the camera’s optical axis) onto the z = 0 plane. Let R⃗ be the vector starting at D and pointing to the
annotation’s position: R⃗ =

(
u −f

)⊺
. We then find the intersection between the line D + sR⃗ (s ∈ R) and

the ground plane z = 0. For mask detection, this process can be applied to the contour points of the mask
to derive the complete projected mask.
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5.2.7 Benchmark

The Masks4Real and BEVOcc datasets aim to address several research questions through compre-
hensive benchmarking and evaluation of state-of-the-art models and MaskBEV. The first of which
is to investigate the impact of incorporating additional orthogonal data, obtained from a different
sensor setup and at a lower annotation cost, to enhance the performance of existing object detection
models. Specifically, we seek to understand whether supplementing a larger dataset with focused,
smaller-scale BEVOcc data can help improve object detection results. Furthermore, the BEVOcc
dataset allows to generalize MaskBEV to dynamic objects, pedestrians and cyclists, allowing fur-
ther study of the mask-based object detection framework in point clouds. This benchmarking will
provide valuable insights into the dataset’s potential to enhance object detection across different
object categories, aiding in the development of more comprehensive and accurate detection models
in occluded scenarios.

5.2.8 Objectives

To summarize, the proposed contribution of this second project are:

• development Mask4Real, a new mask-based dataset derived from V2V4Real;

• development BEVOcc, a novel multi-point of view LiDAR and multi-modal dataset; and

• benchmark of state-of-the-art networks and MaskBEV.

5.2.9 Schedule

The realization of this second project is divided into several tasks described below.

O2 : Multi-angular point cloud dataset for outdoor object detection

P2.1 Development of Mask4Real;

P2.2 Development of the acquisition platform;

P2.3 Data collection;

P2.4 Data annotation;

P2.5 Development the development kit; and

P2.6 Benchmark networks using the dataset (Publication 2)

Details of the schedules for these tasks are provided in Section 6 within the timeline of this
proposal.
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5.3 Multi-Modal Self-Supervised Learning

Humans can readily comprehend occlusion, capitalizing on their inherent understanding of 3D scene
structure. Self-Supervised Learning (SSL) is believed to imbue neural networks with a form of such
rudimentary background knowledge or common sense [13]. Hence, our objective is to employ SSL
to instill in the network a proficient prior regarding the 3D scene structure within an autonomous
vehicle context.

Self-Supervised Learning (SSL) has emerged as an invaluable tool to circumvent the laborious
and expensive process of data labelling [3]. SSL allows neural networks to learn feature represen-
tation without relying on any human-generated labels, and instead learn directly from the data
without relying on any human-generated labels. As data collection is usually cheaper than its an-
notation, it becomes very interesting to pre-train on a large quantity of unlabelled data to acquire
robust features, and subsequently fine-tune on a smaller, labelled, dataset to accomplish a specific
task. This paradigm is particularly interesting for point cloud datasets, where annotation costs can
be prohibitive due to the complexity of annotating 3D data [5], [11]. Notably, these techniques
offer the potential to extend the application of point cloud-based object detection models to envi-
ronments and regions for which no large annotated datasets are available. With many autonomous
vehicle datasets primarily collected in major urban centers of North America and Europe, this could
hinder the application of deep learning methods to other regions or environment types. Reducing
the annotation burden with SSL, and the data collection cost as done with BEVOcc, could allow the
broader application of object detectors in contexts such as rural environments, developing countries,
or forests.

The third project in this proposal is to develop a novel SSL training technique based on the
Joint-Embedding Predictive Architectures (JEPA) framework [101], [102], aimed at making neural
networks better at understanding occlusion. BEVOcc, developed in the second project, will serve as
a solid foundation to experiment with the JEPA framework to train object detectors in LiDAR point
clouds. The crux of this project is to align the features between LiDAR scans and aerial drone-
captured BEV images. The BEV perspective provides invaluable information about the scene’s
actual structure that is not present in LiDAR point clouds. Our working hypothesis is that using
SSL technique to extract features coherent between both representations of the same physical scene
will yield better performances for object detection in complex and occluded scenes, even if the BEV
is not used during inference.

In the annotation process described in Figure 11, only a fraction of the information available in
the drone’s aerial image is used for training — the output of the computer vision object detector —
before being discarded and not used for training. Using SSL techniques would allow the extraction
of more information from the data, and could thus enhance detection performances. Furthermore,
auxiliary sensors like ground-level cameras, hyperspectral cameras, and polarized cameras remain
untapped resources, offering the prospect of a multi-modal self-supervised framework to improve
point cloud object detector performances. This novel SSL technique could be used with the BEVOcc
dataset, and with the other available datasets.
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The goal of this third project is to harness these modalities within a self-supervised framework
to enhance performance. We first desire to exploit the BEV perspective available in BEVOcc by
applying techniques like JEPA [102] due to the contrasting nature of LiDAR point clouds and aerial
imagery. Subsequently, we aim to expand this framework to encompass a wider array of sensor
types.

5.3.1 Joint-Embedding Predictive Architectures

Our first objective is to apply the JEPA framework [101], [102] to BEV images and point clouds. The
core principle of JEPA departs from conventional SSL methods based on joint-embedding (i.e., learn
to predict similar embedding for compatible inputs), such as DINOv2 [103], or the reconstruction
paradigm (i.e., try to reconstruct the input from a corrupted view), like MAE [104] or PointBERT
[41]. JEPA’s distinctive approach is to apply a generative method directly in embedding space, and
not the input space (e.g., pixels, points).

We give here an overview of the JEPA framework [102]. Given two variables, x and y, which
could be two different modalities capturing the same scene (e.g., a point cloud and a BEV image),
two encoders are employed to yield representations sx and sy. The architecture then learns to
predict sy (the representation of y) from sx (the representation of x). The prediction is potentially
conditioned by a latent variable z. The latent variable z serves as a means to introduce infor-
mation for predicting sy that might not be present in sx. For example, z could encode temporal
information that is not present in a single LiDAR scan. The energy function used for learning is
E(x, y, z) = D(sy, P red(sx, z)), which we wish to minimize for compatible inputs. Unlike conven-
tional reconstruction-based approaches, the emphasis here is not on replicating every nuance of y;
rather, it focuses on capturing relevant information. Additionally, the incorporation of VICReg can
prevent the collapse of representations (i.e., the energy function simply outputting a constant value
for all inputs) [105], further bolstering the framework’s effectiveness.

JEPA stands out as a self-supervised learning technique capable of seamlessly operating across
distinct modalities [102]. This framework affords the possibility of performing SSL from images to
point clouds, facilitating knowledge transfer between different data representations. Moreover, the
integration of a temporal dimension is conceivable, with the ability to track individual instances
across multiple frames.

5.3.2 JEPA on BEVOcc

The proposed integration of the Joint-Embedding Predictive Architectures (JEPA) framework with
the Bird’s-Eye View Occlusion (BEVOcc) dataset is illustrated in Figure 13. The core concept
revolves around leveraging both the LiDAR point cloud and the drone’s bird’s-eye view (BEV)
image within the JEPA framework. Since both data modalities capture the same underlying scene,
it is reasonable to anticipate the ability to predict one modality’s representation from the other. The
goal is to train the point cloud encoder to extract embeddings that align with the BEV perspective
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of the scene, providing occlusion-free and comprehensive ground truth information about the scene’s
global structure. Additionally, this framework could also leverage the temporal relation between
point clouds, by tracking instances in time and aligning their features across multiple sequential
scans.

To apply this self-supervised technique to BEVOcc, we will employ the JEPA framework to
corresponding pairs of BEV voxels and image patches. Consequently, the network will be trained to
predict the representation of the aerial image’s features from the corresponding voxel in the point
cloud. In other words, segments of the point cloud that correspond to the same spatial region as
an image patch will serve as the input for the JEPA process, as illustrated in Figure 14. We plan
on using Transformer-based networks to accurately leverage global information about the scene.

Point Cloud
Point Cloud

Encoder Predictor

Drone Image
BEV

Encoder

Figure 13: Proposed application of the JEPA framework to the BEVOcc dataset. A point
cloud encoder will extract features sx from an input point cloud. A BEV encoder will extract features
sy from an input aerial image. We then predict sy from sx, meaning that we train the network to learn
features sx compatible with the BEV image of the same scene.

Per Voxel Features
Alignment

BEV Point Cloud BEV Drone Image

Figure 14: Integration of the JEPA framework with the BEVOcc dataset. The point cloud
encoder generates feature embeddings (sx) from the point cloud input. Simultaneously, the BEV encoder
produces feature embeddings (sy) from the aerial image input. The network is trained to predict sy from
sx, effectively learning features within the point cloud that are compatible with the BEV perspective of
the same scene.

5.3.3 Multi-modal JEPA

In addition to the application of JEPA to the drone’s image and point cloud, we also aim to extend
JEPA into a multi-modal framework. The main idea of this approach is illustrated in Figure 15.
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In addition to predicting the embedding of the drone’s image, we intend to predict the embeddings
of other sensor modalities, such as the cameras attached to each acquisition unit. This concept
could be further expanded to include additional modalities like the hyperspectral and polarized
cameras present within BEVOcc. Even if these sensors are not present at inference time on an
actual autonomous vehicle, this technique could be used as a form of Learning using Privileged
Information (LUPI), where extra knowledge is used during training [106]. We refer to this kind of
training as sensory scaffolding, as additional modalities are used as “scaffolding” to “build” good
feature representation.

Point Cloud 1

Camera Image 1

Point Cloud
Encoder

Camera
Encoder

BEV Predictor

Camera Predictor

Point Cloud 2
Point Cloud

Encoder

BEV Predictor

Camera Predictor

Drone Image
BEV

Encoder

Camera Image 2 Camera
Encoder

Figure 15: Extension of the JEPA framework to a multi-modal context. The proposed ap-
proach involves the application of JEPA across multiple modalities found within the BEVOcc dataset.
As elaborated in Section 5.3.1, we seek to predict not only the embedding of the drone’s image but also
those of other sensors, such as the cameras associated with each acquisition unit. SD refers to the feature
representation of the drone image, SPi to the features of the ith point cloud, and SCi to those of the ith
camera. The Ŝ⊚ refers to the prediction of S⊚ from another modality, and D(·, ·) is the energy function to
be minimized.

5.3.4 Objectives

To summarize, the proposed contribution of this third project are:

• Creation of a new SSL training method based on JEPA;

• Generalization of this technique to a multi-modal context; and

• Evaluation of the technique on BEVOcc.
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5.3.5 Schedule

The realization of this third project is divided into several tasks described below.

O3 : Multi-modal self-supervised learning

P3.1 Development of the SSL technique on drone images and point cloud data;

P3.2 Adaptation of the SSL technique to other modalities; and

P3.3 Evaluate the network performances Publication 3

Details of the schedules for these tasks are provided in Section 6 within the timeline of this
proposal.

5.4 Resources

In order to accomplish the objectives outlined in Section 5, several critical resources will be required,
both in terms of computational capabilities and equipment.

Given the substantial computational demands associated with training deep neural networks,
this project proposal requires access to a range of high-performance NVIDIA GPUs, each equipped
with a minimum of 42GB of memory. The Norlab at Laval University will provide a workstation
equipped with an NVIDIA Quadro RTX 8000 GPU, primarily intended for development purposes.
For intensive training tasks, a compute server equipped with four NVIDIA RTX A6000 GPUs
will be accessible for model training and experimentation, allowing a high throughput of training
operations. This server will serve as a powerful platform for model training and experimentation.
To complement our GPU requirements, resources from Calcul Québec 8 and Compute Canada 9

will be used.

The data collection of BEVOcc, as described in Section 5.2, will require specific sensors. The
Norlab already possesses a large inventory of sensors, including LiDARs and polarized cameras.
This inventory will allow us to quickly start the data collection process.

8calculquebec.ca
9alliancecan.ca
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6 Schedule

Figure 16 presents the schedule for each objective outlined in Section 5. Each objective is accompa-
nied by the main tasks required to accomplish them. The first objective, presented in Section 5.1,
was addressed during the autumn 2022 and winter 2023 semesters, leading to a conference publica-
tion [46]. Subsequently, work on the second objective, presented in Section 5.2, will commence in
the autumn semester of 2023. The third objective, presented in Section 5.3, will begin once data
from the second objective starts to be collected. This approach allows for agile data collection and
enables adaptation based on the needs of the research.

Although the order of these objectives might seem confusing at first glance, the development of
the first objective, MaskBEV, served as a foundation for the subsequent projects. It raised several
research questions about occlusion and its handling in state-of-the-art methods, which ultimately
inspired the creation of a new dataset, the second objective. The data collection for the second
objective will be conducted in an agile manner to detect possible issues or areas for improvement
early in the development process. Finally, this new dataset will serve as the perfect medium to
develop novel self-supervised techniques, described in the third objective.
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O1: Joint Object Detection and Completion
P1.1 Generation of a BEV mask dataset

P1.2 Development of the architecture

P1.3 Benchmark on multiple datasets
Publication 1

P1.4 Ablation study and further analysis
Journal Publication 1

O2: Multi-LiDAR BEV Dataset
P2.1 Development of Mask4Real

P2.2 Acquisition platform development

P2.3 Data collection All seasons

P2.4 Data annotation All seasons

P2.5 Development kit

P2.6 Benchmark networks
Publication 2

O3: Multi-Modal Self-Supervised Learning
P3.1 JEPA on drone images and point cloud

P3.2 JEPA on other modalities

P3.3 Evaluation of the training method
Publication 3

Figure 16: Proposed schedule for achieving the proposed objectives and tasks described in Section 5. The numbers refer to
the objectives listed in Section 5. W= winter semester, S = summer semester, and A: Autumn semester.
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7 Conclusion

This proposal aims to enhance our understanding of the concept of occlusion in LiDAR point cloud
data for deep learning methods. As discussed in Section 2 and Section 3, occlusion plays a crucial
role in point clouds. With the evolution of mobile systems in more complex environments, effectively
handling occlusion becomes critical for deep learning methods and might be the key to the future
of deep learning on LiDAR point clouds. The objectives presented in Section 5 each take a step
towards a better understanding of occlusions in the context of LiDAR point clouds for autonomous
mobile systems. The first objective reformulates the object detection task as a mask prediction and
completion problem. The second objective aims to provide a novel and versatile BEV dataset to
enable a comprehensive study of occlusion and open new research possibilities. Lastly, the third
objective builds on the previous two to propose a new self-supervised technique that leverages the
BEV nature of the developed dataset. Finally, these objectives are planned in a three-year schedule
in Section 6.
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