RandAugment

Practical automated data augmentation with a reduced search space

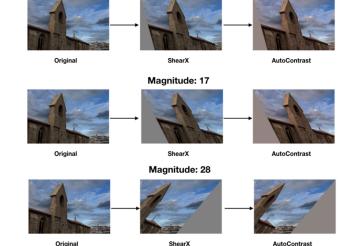
Cubuk, Zoph, Shlens, Le

Googe Research, Brain Team

Presented by William Guimont-Martin 2024-04-03

Data Augmentations

- Increase the diversity of training data
- Act as regularization
- Require expertise and manual work to design
- Depend on the network and dataset



Magnitude: 9

AutoContrast

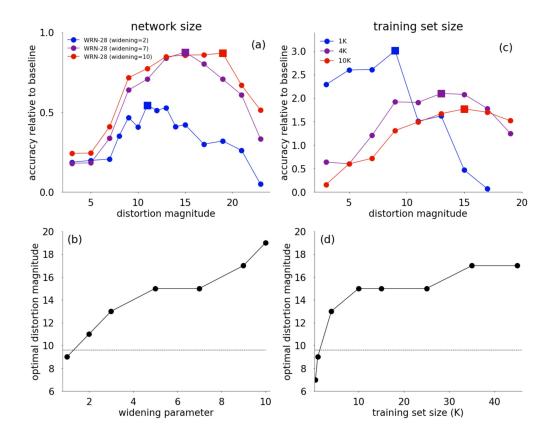
Automatic Data Augmentation

- Learning data augmentation policies
 - AutoAugment (Cubuk et al., 2019)
 - Population Based Augmentation (Ho et al., 2019)
- High computational cost and complicated procedures
- Often use proxy tasks

	search	CIFAR-10	SVHN	ImageNet	ImageNet
	space	PyramidNet	WRN	ResNet	E. Net-B7
Baseline	0	97.3	98.5	76.3	84.0
AA	10^{32}	98.5	98.9	77.6	84.4
Fast AA	10^{32}	98.3	98.8	77.6	-
PBA	10^{61}	98.5	98.9	-	-
RA (ours)	10^{2}	98.5	99.0	77.6	85.0

Challenging the proxy task assumption

Network size and dataset subsets

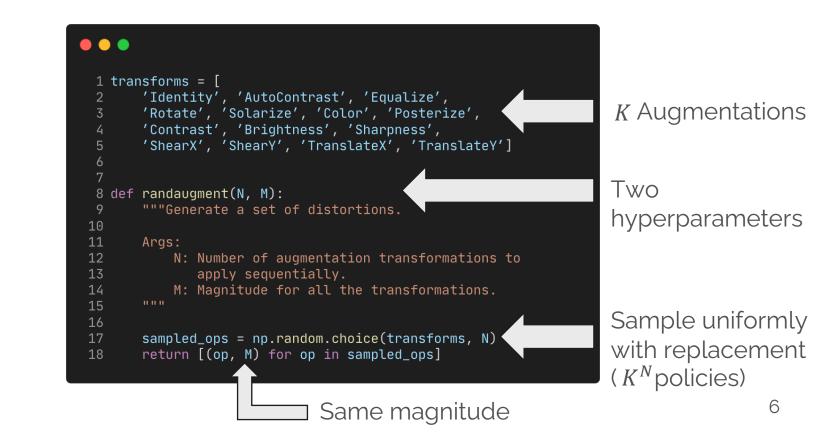


RandAugment

- Does not rely on proxy tasks
- Small search space
- No complicated optimization procedure

	search	CIFAR-10	SVHN	ImageNet	ImageNet
	space	PyramidNet	WRN	ResNet	E. Net-B7
Baseline	0	97.3	98.5	76.3	84.0
AA	10^{32}	98.5	98.9	77.6	84.4
Fast AA	10^{32}	98.3	98.8	77.6	-
PBA	10^{61}	98.5	98.9	-	-
RA (ours)	10^{2}	98.5	99.0	77.6	85.0

RandAugment



Comparison with other approaches

	baseline	PBA	Fast AA	AA	RA
CIFAR-10					
Wide-ResNet-28-2	94.9	-	-	95.9	95.8
Wide-ResNet-28-10	96.1	97.4	97.3	97.4	97.3
Shake-Shake	97.1	98.0	98.0	98.0	98.0
PyramidNet	97.3	98.5	98.3	98.5	98.5
CIFAR-100					
Wide-ResNet-28-2	75.4	-	-	78.5	78.3
Wide-ResNet-28-10	81.2	83.3	82.7	82.9	83.3
SVHN (core set)					
Wide-ResNet-28-2	96.7	-	-	98.0	98.3
Wide-ResNet-28-10	96.9	-	-	98.1	98.3
SVHN					
Wide-ResNet-28-2	98.2	-	-	98.7	98.7
Wide-ResNet-28-10	98.5	98.9	98.8	98.9	99.0

Top-1 and Top-5 on ImageNet

- AutoAugment does not help for larger models
 - Policy found on 10% of the dataset
 - Proxy not representative of the full dataset
- SOTA accuracy in top-1

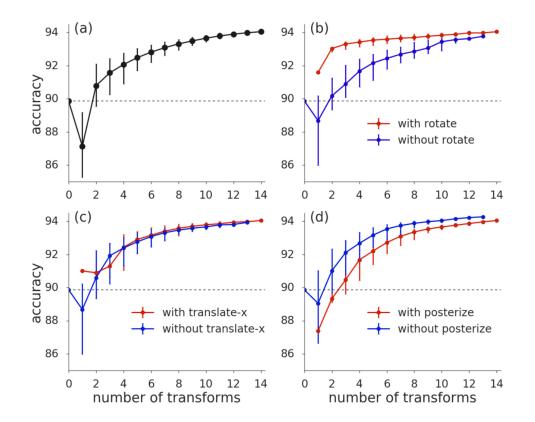
	baseline	Fast AA	AA	RA
ResNet-50	76.3 / 93.1	77.6 / 93.7	77.6 / 93.8	77.6 / 93.8
EfficientNet-B5	83.2 / 96.7	-	83.3 / 96.7	83.9 / 96.8
EfficientNet-B7	84.0 / 96.9	-	84.4 / 97.1	85.0 / 97.2

COCO dataset for object detection

- AutoAugment
 - Uses specialized augmentations for bounding boxes
 - Took 15k GPU hours
- RandAugment is competitive without it
 - Searched over 6 values (N = 1, M = $\{4, 5, 6, 7, 8, 9\}$)

model	augmentation	mAP	search space
	Baseline	38.8	0
ResNet-101	AutoAugment	40.4	10^{34}
	RandAugment	40.1	10^2
	Baseline	39.9	0
ResNet-200	AutoAugment	42.1	10^{34}
	RandAugment	41.9	10^{2}

Impact of included transformations



Impact of included transformations

transformation	Δ (%)	transformation	Δ (%)
rotate	1.3	shear-x	0.9
shear-y	0.9	translate-y	0.4
translate-x	0.4	autoContrast	0.1
sharpness	0.1	identity	0.1
contrast	0.0	color	0.0
brightness	0.0	equalize	-0.0
solarize	-0.1	posterize	-0.3

Learning the probability per augmentation

- RandAugment samples uniformly N transforms
- Can also set a different probability per transform
- Most transformations are differentiable
 backprop to learn the probability per transformation
- Learn to maximize the results on validation images

Learning the probability per augmentation

- Improves performance
- Higher computational demands
 - Requires to apply all K transformations N times to each image

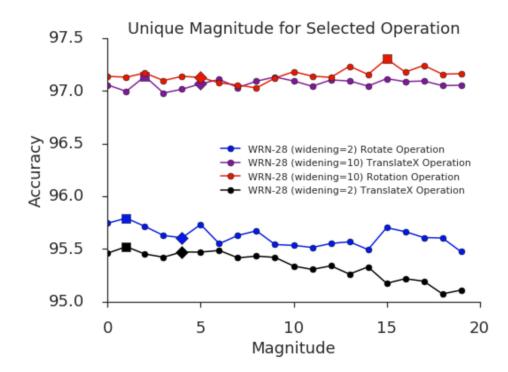
	baseline	AA	RA	+ 1 st
Reduced CIFAR-10				
Wide-ResNet-28-2	82.0	85.6	85.3	85.5
Wide-ResNet-28-10	83.5	87.7	86.8	87.4
CIFAR-10				
Wide-ResNet-28-2	94.9	95.9	95.8	96.1
Wide-ResNet-28-10	96.1	97.4	97.3	97.4

Magnitude methods

- Ways to choose the magnitude
- Similar performances

Magnitude Method	Accuracy
Random Magnitude	97.3
Constant Magnitude	97.2
Linearly Increasing Magnitude	97.2
Random Magnitude with Increasing Upper Bound	97.3

Individual magnitude



RangAugment

•••

```
1 transforms = [
      'Identity', 'AutoContrast', 'Equalize',
      'Rotate', 'Solarize', 'Color', 'Posterize',
       'Contrast', 'Brightness', 'Sharpness',
       'ShearX', 'ShearY', 'TranslateX', 'TranslateY']
 6
8 def randaugment(N, M):
      """Generate a set of distortions.
10
11
      Args:
12
          N: Number of augmentation transformations to
13
             apply sequentially.
          M: Magnitude for all the transformations.
17
      sampled_ops = np.random.choice(transforms, N)
      return [(op, M) for op in sampled_ops]
```


Questions?