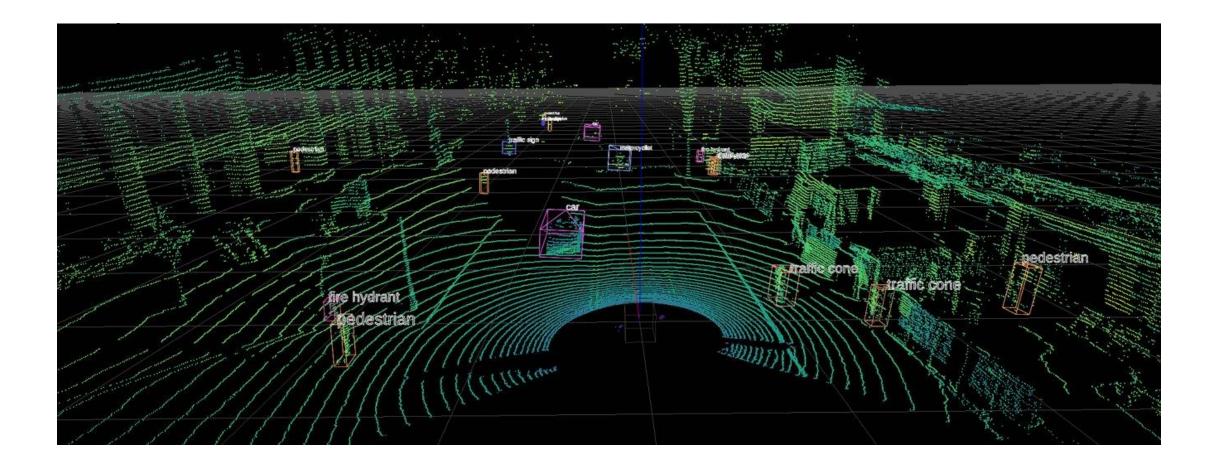
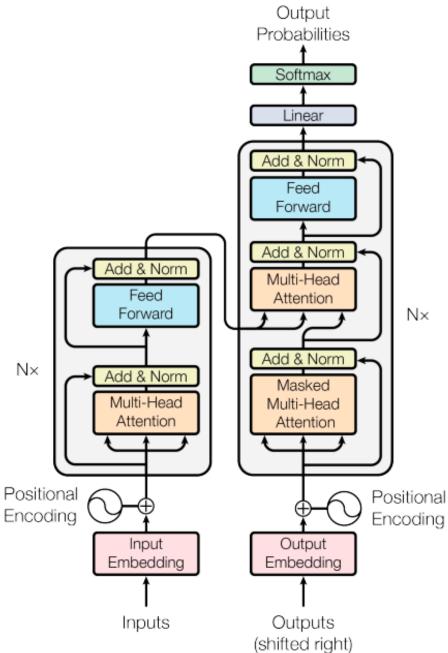
Transformers in Computer Vision

William Guimont-Martin

Transformers + Point Clouds





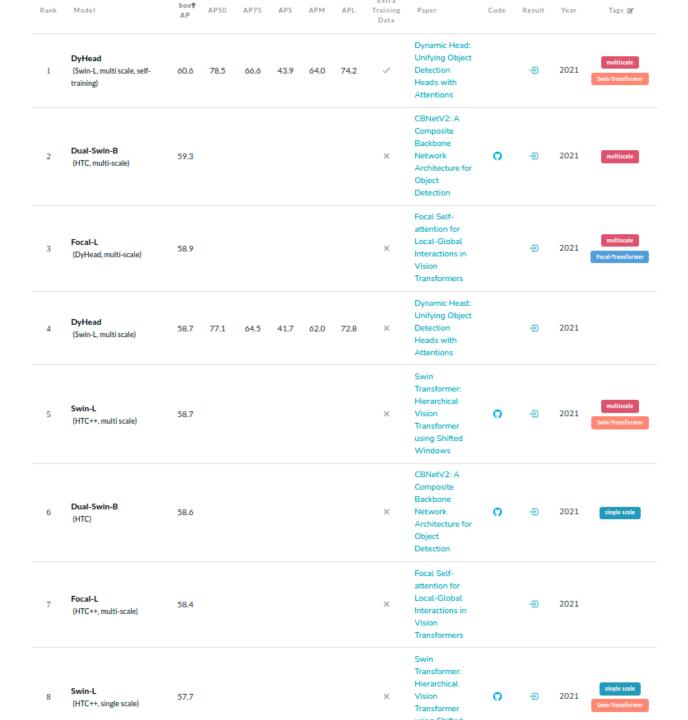
Transformers in NLP

- Attention Is All You Need (2017)
- Revolution in NLP
 - GPT-3 (Generative Pre-trained Transformer 3)
 - 175 billion parameters
 - 499 billion tokens
 - BERT (Bidirectional Encoder Representations from **Transformers**)
 - 110 million parameters

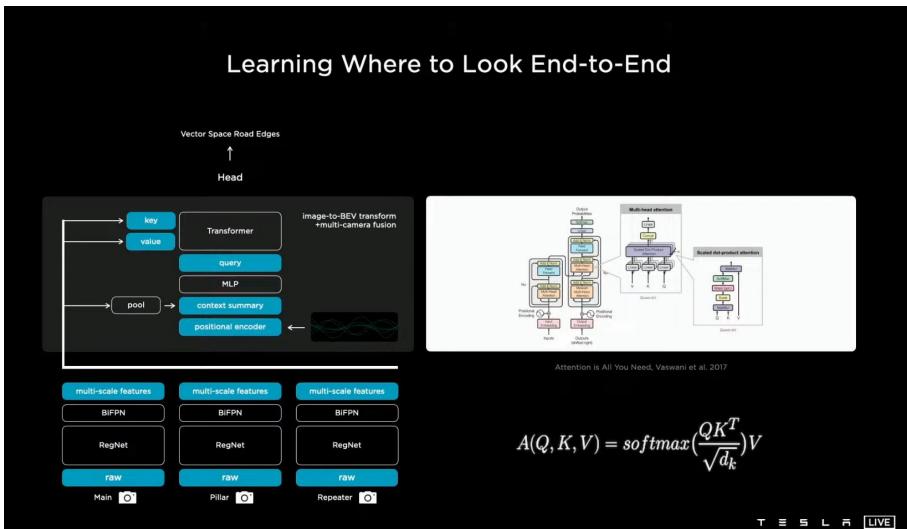
Figure 1: The Transformer - model architecture.

Transformers in Object Detection

- Domination of transformers
- Top-8 models use transformers for "Object Detection on COCO test-dev"



Tesla AI Day

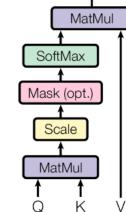


https://youtu.be/j0z4FweCy4M

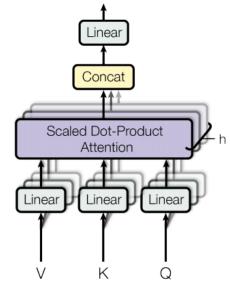
A Quick Review on QKV Attention

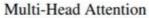
- Query
- Key
- Value

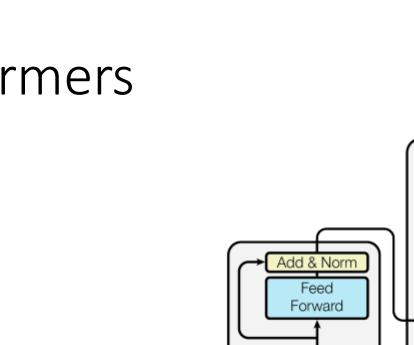
Scaled Dot-Product Attention



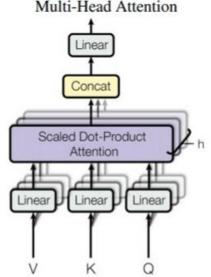
Multi-Head Attention

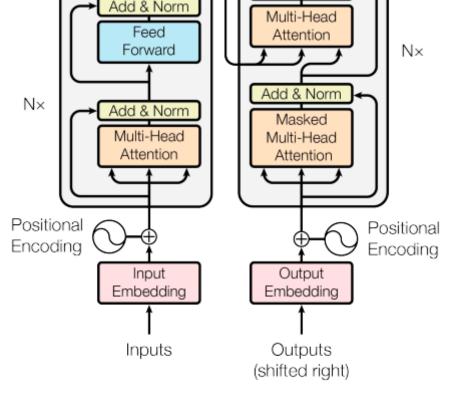






Transformers





Output Probabilities

Softmax

Linear

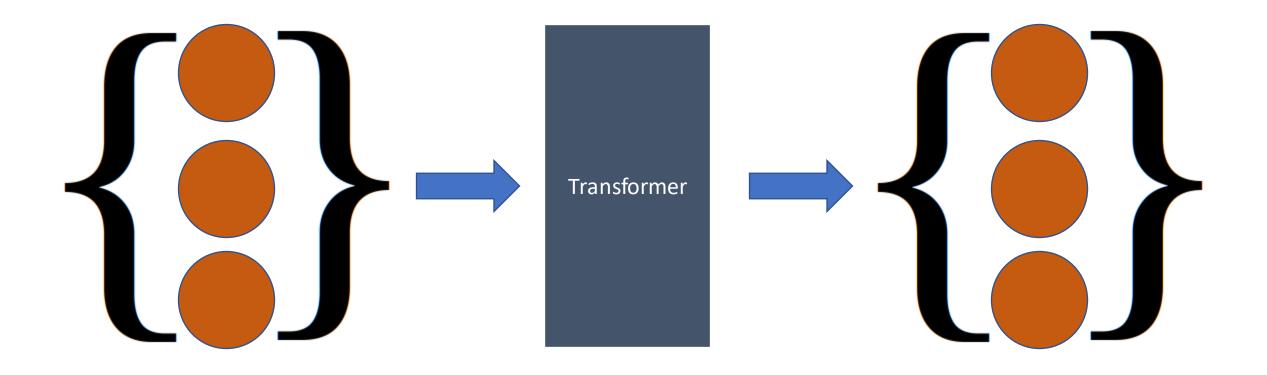
Add & Norm Feed

Forward

Add & Norm

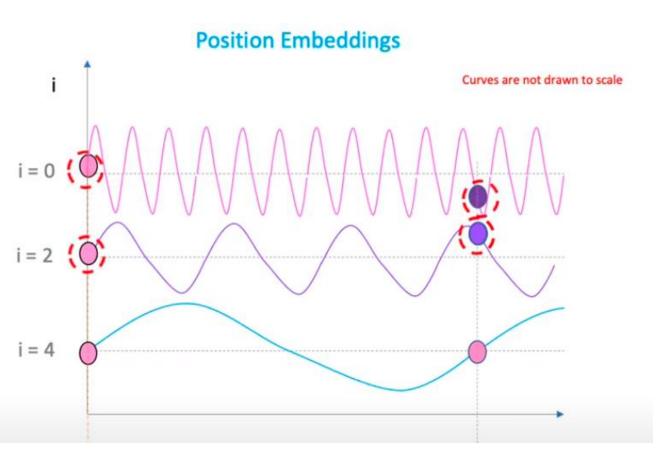
Figure 1: The Transformer - model architecture.

Transformers



Positional encoding

- Fourier positional enconding
- <u>Rethinking Positional</u>
 <u>Encoding in Language Pre-</u> training (Ke, He, Liu, 2020)



https://www.youtube.com/watch?v=dichIcUZfOw&ab_channel=Hedu-MathofIntelligence

Complexity and Path Length

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k\cdot n\cdot d^2)$	O(1)	O(n/k)
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Transformers in Computer Vision

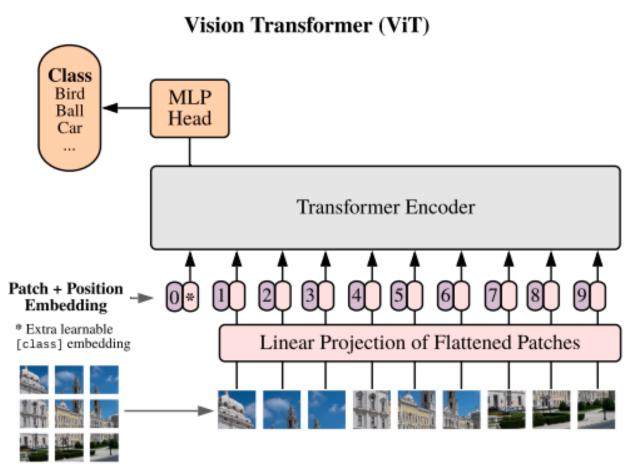
Transformers in CV

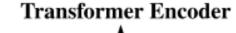
- Patch-based
 - ViT (classification)
 - SWIN Transformer (classification, detection, panoptic)
- Query-based
 - **DETR** (classification, detection, panoptic)
 - Deformable DETR (classification, detection, panoptic)
- Perceiver

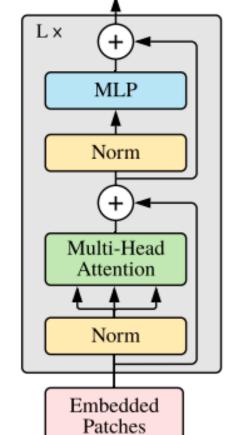
Patch-based

Avoid the Quadratic

Vision Transformer (ViT)





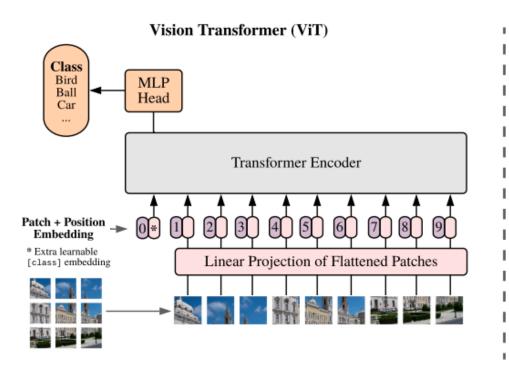


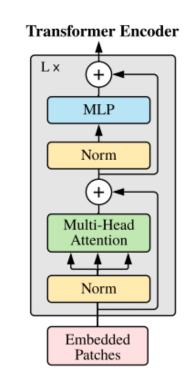
https://ai.googleblog.com/ 2020/12/transformers-forimage-recognition-at.html

An image is worth 16x16 words : Transformers for image recognition at scale, 2021

Attention

• Attention from CLS to input image





Input

Attention

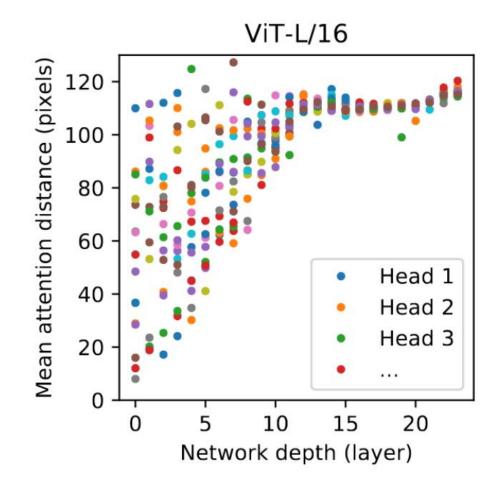
Results

- TPUv3-core-days
- 14x14 patches vs 16x16 (tradeoff compute-precision)

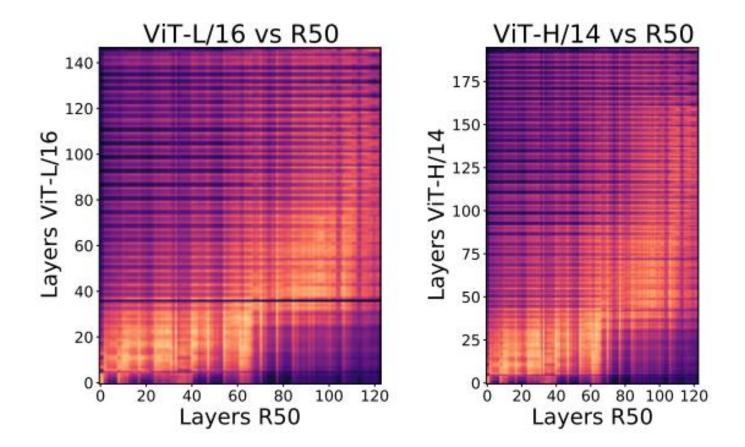
	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^*$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	—
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	—
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	—
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	—
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	—
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Attention Distance

- Mean attention distance ~ receptive field
- More flexible than CNN



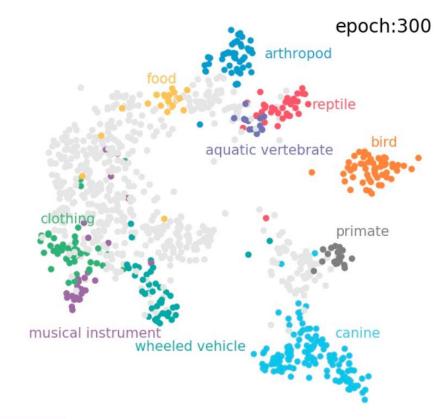
Transformer vs CNN

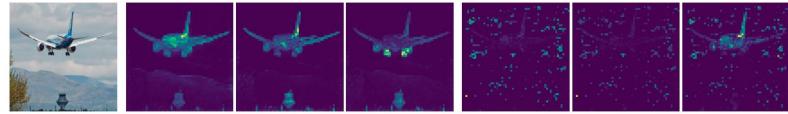


Do Vision Transformers See Like Convolutional Neural Networks? (2021)

DINO

- Self-supervised learning
- KNN classification
- Attention maps
 - Attention maps are better in SSL
 - Supervised stops learning when good on task

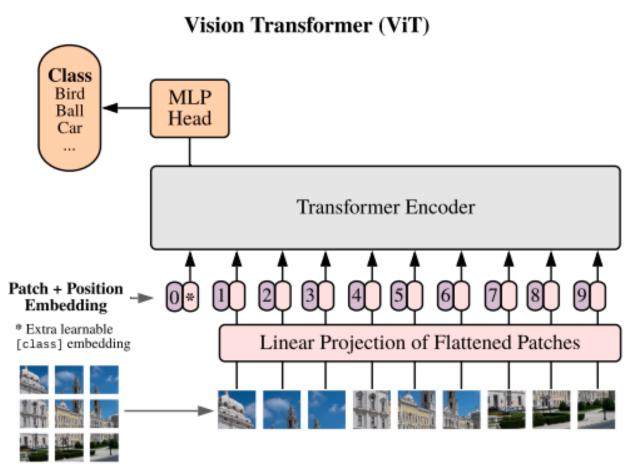


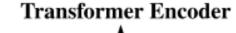


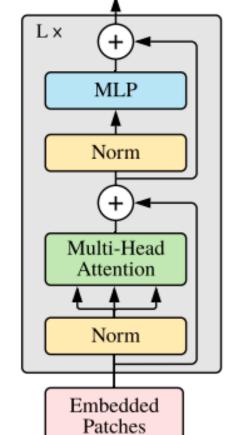
Emerging Properties in Self-Supervised Vision Transformers

https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training

Vision Transformer (ViT)



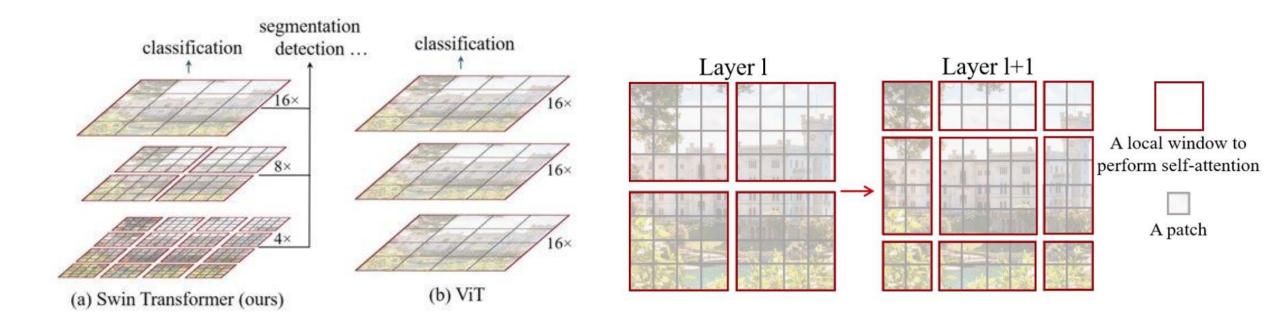




https://ai.googleblog.com/ 2020/12/transformers-forimage-recognition-at.html

An image is worth 16x16 words : Transformers for image recognition at scale, 2021

SWIN Transformer – A New Backbone

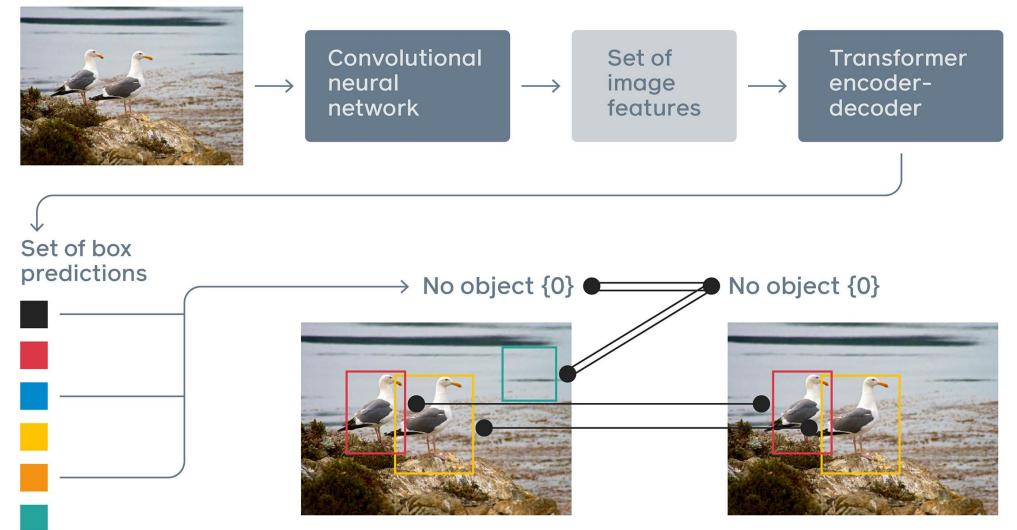


Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Query-based

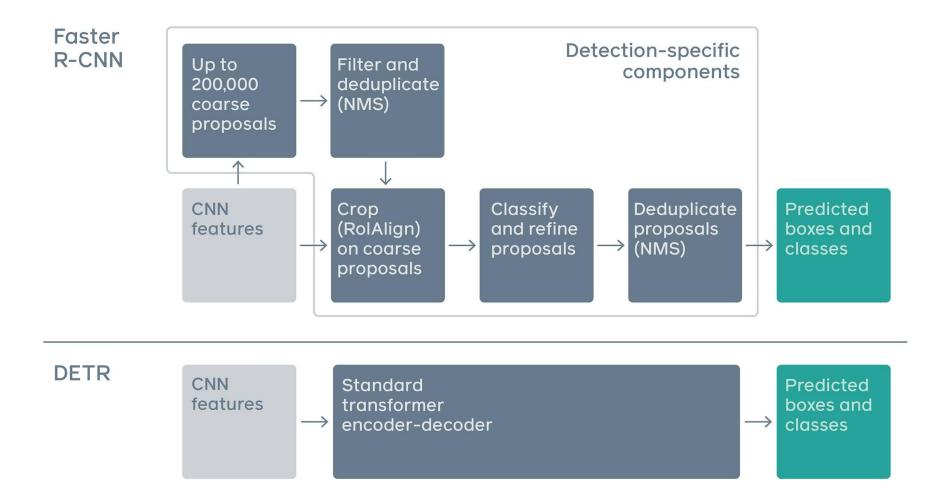
Asking the real questions

DETR — **DE**tection **TR**ansformer



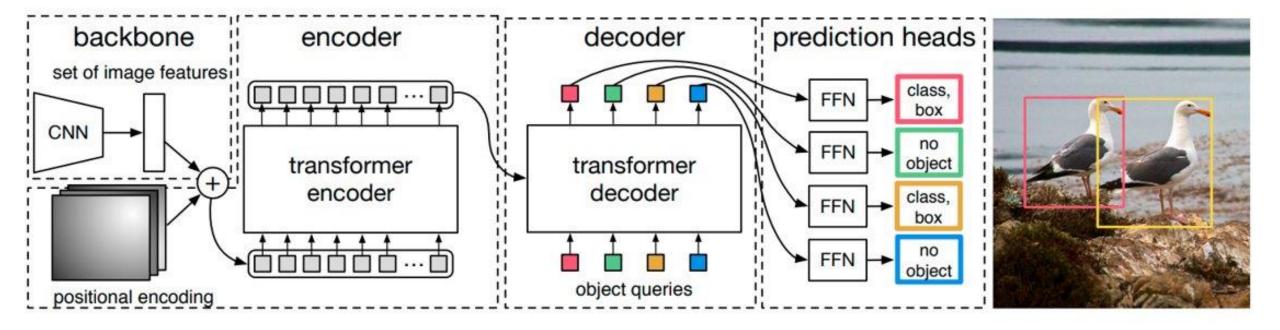
Bipartite matching loss https://ai.facebook.com/blog/end-to-end-object-detection-with-transformers/

DETR vs Faster R-CNN

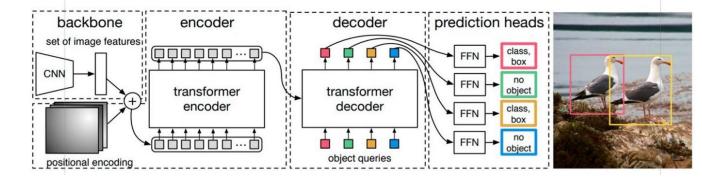


https://ai.facebook.com/blog/end-to-end-object-detection-with-transformers/

DETR Architecture



Encoder attention



- Attention map of the last encoder layer
- Trained on bounding boxes

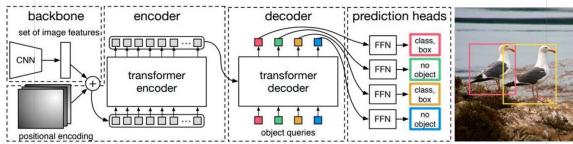
self-attention(430, 600)

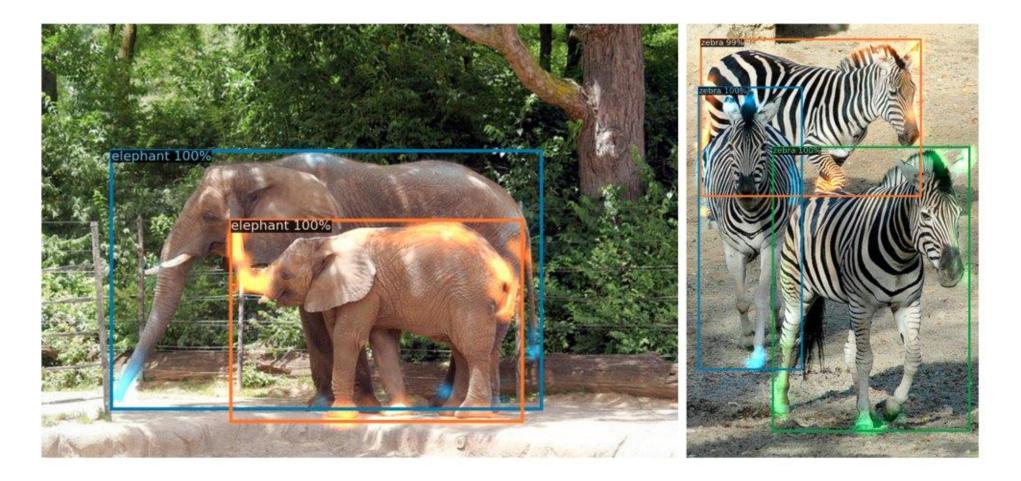


self-attention(440, 1200)

self-attention(450, 830)

Decoder attention scores





Results

Model	GFLOPS/FPS	#params	AP	AP ₅₀	AP ₇₅	APs	APM	APL
RetinaNet+ 1	205/18	38M	41.1	60.4	43.7	25.6	44.8	53.6
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1

Perceiver

Another way to see

Perceiver

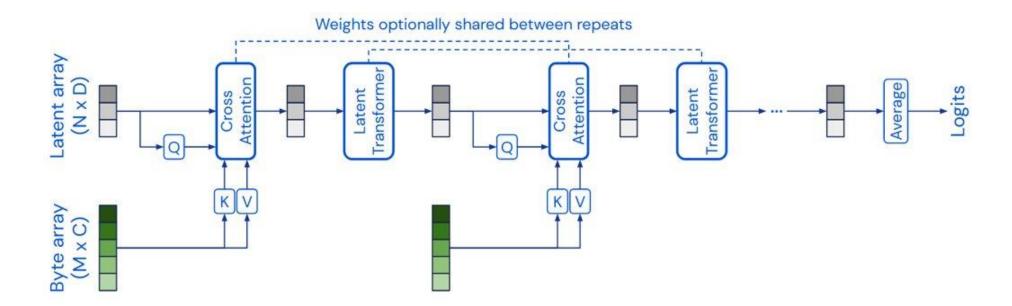
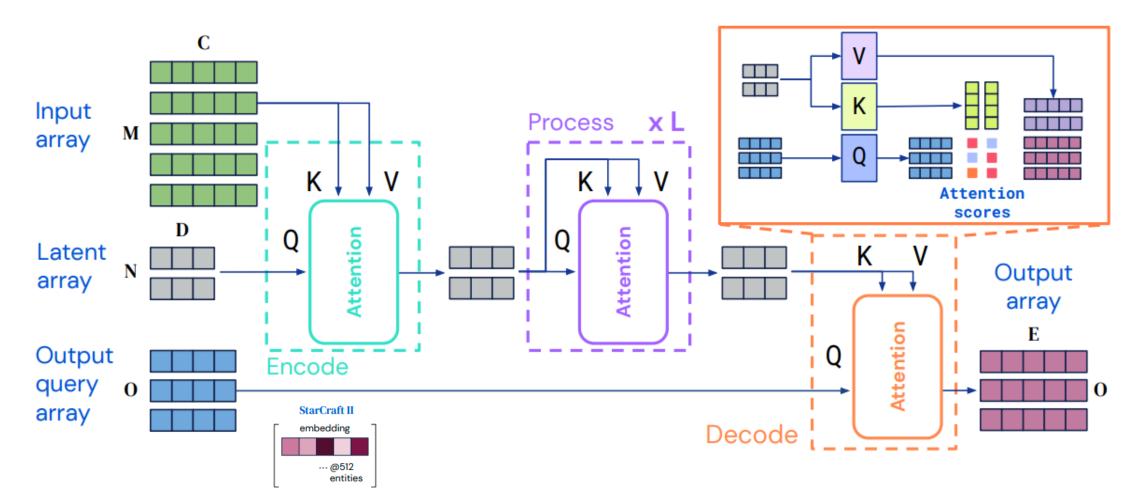


Figure 1. The Perceiver is an architecture based on attentional principles that scales to high-dimensional inputs such as images, videos, audio, point-clouds, and multimodal combinations without making domain-specific assumptions. The Perceiver uses a cross-attention module to project an high-dimensional input byte array to a fixed-dimensional latent bottleneck (the number of input indices M is much larger than the number of latent indices N) before processing it using a deep stack of Transformer-style self-attention blocks in the latent space. The Perceiver iteratively attends to the input byte array by alternating cross-attention and latent self-attention blocks.

PerceiverIO

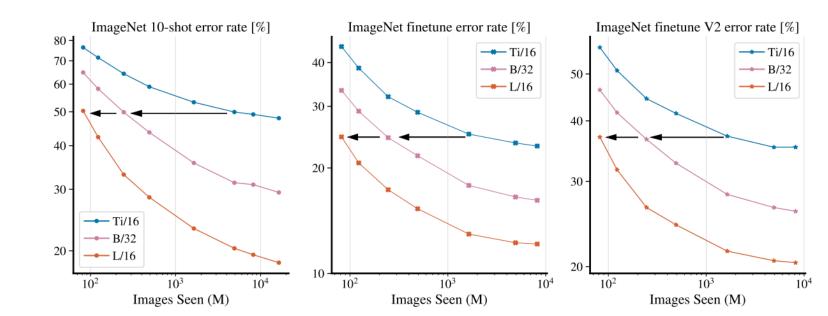


Perceiver IO: A General Architecture for Structured Inputs & Outputs, (2021)

Conclusion

- Transformers revolutioned NLP
 - The revolution started in CV
- Weaker inductive biases than CNN
 - Possibly better with enough data
- Scale very well

Scaling Vision Transformers



Useful Links

- <u>ViT @ Google AI Blog</u>
- <u>SWIN @ arXiv</u>
- DETR @ Facebook AI
- DINO @ Facebook AI
- <u>Perceiver @ arXix</u>
- <u>PerceiverIO @ arXiv</u>